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Consider the action of a group G < S, that permutes the n variables in a
polynomial ring k[X,,..., X,} over a field k. Two related properties, the
Cohen-Macaulay property and F-rationality, are studied in the ring of invariants,
and the following results are obtained. (1) The invariant ring k[X|,..., X,]C
produced by cyclic permutation of the variables is shown not to be Cohen—Macaulay
in characteristics dividing n for n > 4. This completes the analysis of the charac-
teristics in which this invariant ring is Cohen—Macaulay. (2) The non-F-rational
locus of k[ X,..., X,,]"’" is found to have positive dimension for certain # and &,
although this ring possesses many of the properties of F-rational rings. © 1995
Academic Press, Inc.

Any finite group G can be made to act on a polynomial ring in a natural
and nontrivial way: Embed G as a subgroup in a permutation group §, for
some n, fix a field k, and let G act on k[X,,..., X, ] according to the
k-algebra action determined by o(X)) = X,,, o€ G. Such actions
(“variable permuting actions”) seem innocuous enough to produce good
properties in the ring of invariants k[ X,..., X,]° Of course, this intu-
ition holds true to a certain extent, for the invariant ring enjoys certain
basic properties, including evidence that all ideals might be tightly closed.
Specifically, this ring is well known to be a normal graded F-pure domain
finitely generated over k and often has a negative g-invariant. (See
Sections 1 and 2.)

Notably absent from this tight closure evidence is the Cohen—Macaulay
property, which is known to be present in the ring k[X,,..., X,]° for
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some combinations of n, G < §,, and k and to be absent for others. (See
Section 3.) Consequently, it is natural to study two related issues:

QUESTION 1. When is k[ X|,..., X,]1° Cohen-Macaulay? That is, for
which choices of n, an embedding G < §,, and k is the ring Cohen—Macaulay?

QUESTION 2. When are its ideals tightly closed? Or a less stringent
question. When is k[ X, ..., X,1¢ F-rational?

These are the questions we study in this paper. Some remarks are in
order at this point. Namely, there are some important initial remarks to
make and we should briefly summarize prior results and results obtained
in this paper.

Initial Remarks on Questions 1 and 2

Fixing n and G < §,, both problems are quickly solved for most &, due
to an important result of [HH1]: In all but the finitely many characteristics
dividing |G|, the invariant ring k[ X,,..., X, 1 is well known to split off
from the regular ring k[ X|,..., X,] The result of [HH1] then guarantees
that such k[X,,..., X,]° are F-rational (hence also Cohen-Macaulay).
Thus, we only need to answer Questions 1 and 2 when char(k) divides |G|.

Due to this reduction and our expectation that the salient feature of the
field k is its characteristic, we like to think of the problems phrased as
follows: Fixing n and G < §,, we have a family of rings [ X,,..., X, 1%,
parametrized by the characteristic, all but finitely many of which are
Cohen—Macaulay and F-rational. Now the question is: What happens in
these finitely many characteristics (those dividing [G[)?

We note that the result of [HR1], asserting that the action of a linearly
reductive group on a regular ring produces a Cohen—Macaulay invariant
ring, does not apply to Question 1 because a finite group G is not linearly
reductive in characteristics dividing its order.

Prior Results for Questions 1 and 2

Given how many nice properties the rings k[ X,..., X,]° have and the
fundamental nature of the questions, it is surprising how little is known in
characteristics dividing |G.

Prior results for Question 1 in characteristics dividing |G| only concern
the groups G = S,, A, (known classically) and some of the cyclic groups
[Be, FG]. (In each case the embedding G < S, is the usual one.)

There are essentially no prior results on Question 2 in characteristics
dividing |G|. One only had answers in trivial cases, such as when
k[X,,..., X,]° is regular (and hence F-rational), as is the case for G = §,,
or not Cohen-Macaulay (hence not F-rational), as was known for the
cyclic groups mentioned above.
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See Section 3 for references and more detailed explanations of these
results.

Results in This Paper

We answer Question 1 when G is cyclic and the embedding G < S, is
the natural one (Theorem 7.2). (That is, embed G = C, in S, by identify-
ing a generator of G with the n-cycle (12--- n).) That is, we consider the
k-algebra action of the cyclic group C, = (o) of order n on the polyno-
mial ring k[ X, ..., X, ] determined by

o(X)) =X,
o(X;) = X,
0’()(n—l) =Xn
(T(Xn) =)(l'
We show in 7.2 that the invariant ring k[ X,,..., X,]° is Cohen—Macaulay

if and only if n < 3 or char(k) is relatively prime to n.

A result (Theorem 4.1) that we obtain en route to 7.2 might be useful in
answering Question 1 for any embedding G < S, of a finite abelian group
G. This result concerns the étale locus of k[ X,,..., X,1° ck[X,,..., X,].
We explain how it might be used in a more general attack on Question 1 at
the end of Section 7.

Theorem 7.2 extends naturally to certain embeddings G < S, of prod-
ucts of cyclic groups (Theorem 7.3). Thus, we answer Question 1 for certain
embeddings of any finite abelian group G.

We answer Question 2 when G = A, (the alternating group) for certain
values of char(k) dividing |4, = n! /2. (The embedding A, < S, is taken
to be the natural one.) Namely, we show that k[X,,..., X, 1" is not
F-rational if n, p = char(k) = 3 and n = 0 or 1 mod p (Theorem 12.2),
and, furthermore, that its non-F-rational locus has positive dimension
(Theorem 12.3). In other words, these rings do not just fail to be F-rational
at isolated points in their spectra. The results 12.2 and 12.3 are somewhat
surprising because the rings k[ X,,..., X,]?" have the major characteris-
tics of graded F-rational rings. (They are normal Cohen—Macaulay F-injec-
tive domains with negative g-invariants: See Sections 1 and 2.)

An interesting theme in our results is that the examined ring
kX,,..., X,J° fails to maintain, in at least some of the characteristics
dividing |G|, a good property (Cohen—Macaulay or F-rationality) that it
possesses in the other characteristics. (This is not a universal phenomenon:
See Example 1 in Section 3.)

The rings in this paper are tacitly assumed to be Noetherian.
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1. BACKGROUND: R¢ AND ITS FREE LOCUS

This section contains background material concerning the ring RY and
the locus of primes of R on whose fibers G acts freely (i.e., the “free”
locus in Spec R“). We state this material in a fairly general setting that
yields an efficient presentation and suits our purposes for later sections.
Namely, R will denote a domain finitely generated over a field & of
characteristic p > 0, and & will be a finite group acting on R by k-algebra
automorphisms.

A classical result of E. Noether asserts that R is finitely generated over
k. The invariant ring is also easily seen to be a normal domain when R is.
(The G-action on R extends to the fraction field E of R, and EC is the
fraction field of RY so RY =E®NR is an intersection of normal
domains.) Note that these properties hold in any characteristic.

A well-known characteristic-sensitive property of R is that RY is a
direct summand of R as an R®-module when the characteristic does not
divide |G|. (One easily checks that the map R — R that sends

1
f**“lagEGU(f)

is RY-linear and retracts the inclusion R® c R)) In particular, RO is a
direct summand of R in characteristic zero. In the next section, we will see
how this splitting property applied when R is regular forces R® to be
Cohen—-Macaulay and F-rational in such characteristics.

When one is wondering about depths of ideals in R® (as we will when
considering whether RY is Cohen—Macaulay), it is useful to have the
following spectral sequences relating group and sheaf cohomology from
[Gr].

1.1. PROPOSITION. Let R be a finitely generated k-algebra and let G be a
finite group acting on R by k-algebra automorphisms. Fix an ideal I C RS.
Consider the spectra X = Spec R, Y := Spec R and their open sets X = X
\ V(UR), Y := Y\ V(I). There are two spectral sequences with the same
abutment whose E{9 terms are given by

1: H(G, H?(X, &)
I: H?(Y,HY(G, o)),
where HY(G, @) is the sheaf associated to the presheaf on Y that sends an

open set U to H(G, H %V, &), where V is the inverse image of U under
X-Y.
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Proof. This is in [Gr]. These spectral sequences arise as the iterated
homologies of the double complex

Homk[(;](Pq ,C?),

where P.— 0 is a projective resolution of k£ over k[G] and C- is the Cech
complex of @, with the open cover {D(x,)};, where the x; are a finite set
of generators of I.

We now shift our focus to the fibers of R¢ C R. In the remainder of this
section, we discuss two related notions for the induced action of G on a
fiber to be free. This action is described by o.Q = o(Q) (for Q € Spec R
and o € G). Due to the incomparability of primes in a fiber (recalling that
RY C R is module-finite), the action on any particular fiber is transitive.
Thus, there are at most |G| elements in a fiber, and G acts freely on a
fiber, in the sense that every prime in it has a trivial stabilizer, precisely
when that fiber has exactly |G| elements. This is one notion of a free
action on a fiber, but we would rather use the following related notion.

1.2. DEFINITION. We say that G acts freely over P € Spec R (or acts
freely on the fiber over P) if RS C R, is étale.

A property of such primes key to our results in Part I is the following
normal basis theorem from [Fo). It guarantees a normal basis for RS — R,
at a maximal ideal m C R over which the action is free.

1.3. PROPOSITION. Let A be a semilocal domain and let G be a finite
group of automorphisms of A acting transitively on the maximal ideals of A. If
A is a finite étale extension of A©, then there exists an f € A such that {o (f):
o € G} is a free basis of A over A°.

Proof. [Fo, Lemma 3].

We end this section by addressing two natural questions about our “free
locus” (i.e., the locus in Spec RY over which the action of G is free): the
openness of this locus, and its relationship to the less subtle notion of
freeness (that the fiber in question have |G| elements). For this, we use the
well-known fact that R is module-finite over R® of torsion-free rank |G]|.
(R is easily seen to be algebra-finite and integral over RC. The fraction
field E of R is isomorphic to R ®. L, where L is the fraction field of
RC. The induced action of G on E produces L = EC as invariants, so
tkpe R = dimgc E = |Gl.)

1.4. PROPOSITION. Let R be a domain finitely generated over a field k,
and suppose a finite group G acts on R by k-algebra automorphisms. Define

U= (P € Spec R°: R§ — R, is étale}
V == {P € Spec R : the fiber over P has |G| elements}.
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Then

@) U is Zariski open in Spec RC.
(b) If k is algebraically closed, then U N Specmax R¢ =V N
Specmax R¢.

Proof. (a) Let P € U, and let Q,,...,Q, be the primes lying over P.
There are elements f € R°\ P and g € R\ U ,Q, such that Rf —> R,
is étale. Let h == [T, .;0(g), so h € R®\ P. Then Rf, — R, is €tale, so
D(fn) c U.

(b) Let m C R be a maximal ideal.

If m € U, then R — R, is flat and module-finite, hence free of rank
rkgo R,, = |G|. Then dim,,, «k(m)0 &« R =|G| and «(m) =k is alge-
braically closed, so Spec x(m) 8 R has |G| elements.

If m €V, then dim,,, ,k(m) & R =|Gl|, so R, has |G| generators
over R. Also 1k R,, = |G|, so these |G| generators are free generators.
Thus RS — R, is flat, and its closed fiber k(m) & R = I1\% & is étale,
so by [Ra, Theorem 2, p. 55}, RS — R,, is étale.

2. TIGHT CLOSURE

This section contains some background material on tight closure perti-
nent to our discussion of F-rationality in the ring R“~.

Tight closure is an operation on submodules defined principally in prime
characteristic that is due to Hochster and Huneke [HH1-3, Hol] and has
been studied by many others (Fedder, Watanabe, Smith, and Aberbach, to
name a few). The principal motivations for studying tight closure are
results of Hochster and Huneke that settle and in some cases improve
certain homological conjectures [HH1-3], and the connection made by
Smith between F-rational rings (a tight closure notion) and rational singu-
larities [S]. For example, Hochster and Huneke use tight closure, after
reducing to a prime characteristic setting, to prove that direct summands
of regular rings containing a field are Cohen—Macaulay [HH1]. (The proof
is, actually, quite easy, given basic facts about tight closure.) They also
prove a strengthened form of the Direct Summand (or “Monomial”
Conjecture (again, for rings containing a field) [HH2]. Smith showed that
F-rational rings have the prime-characteristic analogue of rational singu-
larities [S]. These accomplishments provide considerable hope that a better
understanding of tight closure (and of the various ring-theoretic properties
associated with it) will yield further insights into homological algebra and
singularities.

In its simplest form, tight closure is an operation on ideals in a ring of
prime characteristic. An element x of a ring A is in the tight closure I* of
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an ideal I C A if there is an element ¢ € A4 not in any minimal prime of A
for which cx? is in the ideal generated by the gth powers of elements of 7,
for all sufficiently high powers g of the characteristic [HH1]. Thus, taking
the tight closure of an ideal produces a larger ideal.

With this definition in hand, one can now define various ring properties.
We will primarily discuss F-rationality, but there are others (e.g., strong
and weak F-regularity) discussed in the literature [HH1-3]. (The “F”
appearing in the names of these concepts refers to the “Frobenius” map,
since this map is heavily used in the tight closure operation.)

2.1. DEFINITION. A ring of prime characteristic is F-rational if all of its
parameter ideals are tightly closed. A parameter ideal is one generated by
elements x,,...,x, that are part of a system of parameters in every
localization at a prime containing them (ie., for every prime P D
(x;,...,x,), the images of x,,..., x, are part of a system of parameters in
the localization at P) [HH3].

As mentioned earlier, K. E. Smith has shown that, under the mild
hypothesis of excellence, F-rational rings have the prime-characteristic
analogue of rational singularities [S]. Furthermore, F-rational rings are
roughly between regular rings and Cohen—Macaulay normal rings. (That
regular implies F-rational implies normal is in [HH3, HH1). That F-ra-
tional implies Cohen-Macaulay requires a mild hypothesis (e.g., excellence
or homomorphic image of Cohen—Macaulay) and is in [HH3].)

One naturally wonders about the difference between F-rationality and
the property that all ideals are tightly closed (known as weak F-regularity
in the literature). These two properties are generally distinct, but coincide
in Gorenstein rings. That is, once the parameter ideals are tightly closed in
a Gorenstein ring, all ideals must be tightly closed.

A large class of F-rational (or even weakly F-regular) rings is provided
by the direct summands of regular rings [HH1]. This nice fact, which is
evident from the definition of tight closure, also has immediate conse-
quences for invariant rings due to the splitting property described in
Section 1. Namely, we have

2.2. PROPOSITION. Let R be a regular ring finitely generated over a field k,
and let G be a finite group acting on R by k-algebra automorphisms. Suppose
char(k) does not divide |G|. Then RC is F-rational (even weakly F-regular)
and Cohen—Macaulay.

Proof. Such an R€ is a direct summand of R as an R%-module (see
Sect. 1). We have already noted that direct summands of regular rings are
weakly F-regular and F-rational, due to results of [HH1]. And, we noted
above, F-rational rings that are images of Cohen—-Macaulay rings (for
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instance, finitely generated k-algebras) are themselves Cohen—Macaulay
[HH3].

Thus, when a finite group G acts on a polynomial ring R =
k[X,,..., X,] by permuting the wvariables, the invariant ring is
(Cohen—Macaulay and) F-rational in characteristics relatively prime to |Gl.
So, as stated in the introduction, it is only interesting to study these
properties in the finitely many characteristics that divide |G]|.

We next define two concepts (F-purity and the a-invariant), state neces-
sary conditions for F-rationality with these concepts, and show that a large
class of invariant rings satisfy these conditions, giving evidence for their
F-rationality. All rings in the remainder of this section are assumed to be
of prime characteristic.

2.3. DEFINITIONS-PROPOSITION.

(a) A ring A is F-pure if for any A-module M,
Fol:AM—-AM

is injective, where F: A — A is the Frobenius map a — a” (and p = char( A4)).
(b) An F-rational Gorenstein ring is F-pure.

(c) Let A be an N-graded ring such that [ A]l, = k is a field, and let m
denote its homogeneous maximal ideal. The a-invariant of A, denoted a( A), is
defined to be

a(A) = max{d € Z:[HI™*(4)], # 0},

where the dth piece is with respect to the induced Z-grading on H3™ “( A).
(d) An F-rational graded ring (graded, in the sense of part (c)) has a
negative a-invariant.

Proof.  See [HR2] or [HH3] for the induced Z-grading in (c). Proofs of
(b) and (d) are in [FW]. A different proof of (d) is in [HH3].

2.4. PROPOSITION. Let R be the polynomial ring k[ X,, ..., X,] over the
field k, and let G be a finite group that acts on R by k-algebra automorphisms.

(a) Suppose the action of G permutes the variables (i.e., there is an
embedding of G in S, for some n such that the action is given by o(X,) =
X, for 0 € G). Then R® is F-pure.

(b) Suppose the action of G preserves degrees and R s
Cohen—Macaulay. Then a(R%) < 0.

Proof. (a) Given a monomial u in X,,..., X,, let ¢( u) be the sum of
the elements in its orbit. (Such elements will be monomials.) The reader
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can easily check that R is the k-span of the elements ¢( u), as u ranges
over the monomials. We will construct an (R)?-linear retraction of
(RY)P c R (where p = char(k). This verifies the F-purity of R® because
it shows that the map (R)? c R®, hence also the isomorphic map F:
R¢ — R, splits.

Map RY = k-span{¢(u): u is a monomial} to k-span{¢(v?): v is a
monomial} k-linearly, by fixing the ¢( p) for which u is a pth power, and
killing the others. Map k-span{¢(v*): v is a monomial} to k”-span{¢(v?):
v is a monomial} = (R%)” by retracting k? C k (and fixing the ¢(v?)).
The composition of these maps has the desired properties.

(b) a(R®) is independent of char(k). (The a-invariant of an N-graded
Cohen—Macaulay ring S is the degree of the Hilbert series of S as a
rational function [HH2, Discussion 7.4(b)].) R® is F-rational in characteris-
tics relatively prime to |G| (see 2.2), so a(R%) < 0 (by 2.4).

Thus, for the natural (variable permuting) action of A4, on R =
k[X,,..., X,), the invariant ring R“*~, which is known to be Gorenstein
(see Sect. 3), is F-pure with a negative a-invariant. However, we shall see
in Part II that this ring is #not F-rational in many characteristics.

The remainder of this section mainly concerns criteria for F-rationality
to be used in Part II. The following proposition contains one such
criterion, as well as a result on the openness of the F-rational locus. This
criterion, the initial version of which was proven by Fedder and Watanabe
[FW], characterizes F-rationality in terms of F-purity with a negative
a-invariant in Gorenstein rings having an isolated non-F-rational point.
Each of these results can be found in greater generality in the papers cited
in the proof. (For example, there is a version of (b) in [HH3] in which the
Gorenstein hypothesis is weakened to Cohen—Macaulay.)

2.5. PROPOSITION.  Let A be a Gorenstein N-graded algebra finitely gener-
ated over | A), = k, a field, and with homogeneous maximal ideal m.

(a) The F-rational locus is open in Spec A, and the radical ideal
defining its complement is homogeneous.

(b) Suppose that k is perfect and the localization of A at any prime
except m is F-rational. The following are equivalent.

() A is F-rational.
(ii) A is F-pure and a(A4) < 0.

Proof. For (a), see Theorems 4.2 and 4.4 of [HH2]. Part (b) is Theo-
rems 7.11 and 7.12 in [HH2], except that we have replaced the F-injectivity
of the Gorenstein ring A in (ii) with the equivalent condition of F-purity
[HR2].
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We give a second criterion, to be used in Part 11, in which the F-rational-
ity of certain Gorenstein rings is characterized by a direct summand issue.

2.6. PROPOSITION. Let A C B be a module-finite extension of rings, where
A is Gorenstein and B is regular. The following are equivalent.

(i) A is F-rational.
(ii)  Every ideal I of A is contracted from B, i.e., IB N A = I.
(iii) A is a direct summand of B as an A-module.

Proof. (i) follows from (iii) because a direct summand of a regular ring
is F-rational (even weakly F-regular) [HH1].

We now show (i) = (ii) = (iii). Assume A is F-rational. If f € 4 is an
ideal, then /B N A C I'* because A C B is module-finite [Hol], so every
ideal of A is contracted from B. (We are using that every ideal is tightly
closed in an F-rational Gorenstein ring. See Section 2.) When A is
Gorenstein (or even just “approximately Gorenstein,” as in [Ho2]) and
A <€ B is module-finite, this contractedness condition guarantees that A is
a direct summand of B [Ho2}. (That is, A is cyclically pure in B and A is
approximately Gorenstein, so A is pure in B by [Ho2]. Then A4 must be a
direct summand of B because 4 C B is module-finite.)

Remark. Although our emphasis in this paper is on F-rationality, as
opposed to weak F-regularity, we remark on the following modification to
2.6. One can replace the hypothesis of Gorenstein with normality and (i)
with ‘4 is weakly F-regular” and obtain a statement that can be proven
with essentially the same proof.

3. EXAMPLES

Consider a finite group G < S, acting by k-algebra automorphisms on a
polynomial ring k[X,,..., X,] over a field & by permuting the variables:
o(X) =X, for o €G. In this short section we illustrate with previ-
ously known examples that the invariant rings arising in this manner may
or may not be Cohen—Macaulay or F-rational when char(k) divides the
order of G. (Compare with 2.2.)

EXAMPLE 1. The symmetric group. Let S, act on k[X,,..., X,] by
permuting the variables. The invariant ring produced by this action is well
known to be the polynomial ring k[e,,...,e,], where e, is the ith symmet-
ric polynomial in X, ..., X,. (See [Co], for example.) This invariant ring is
regular, hence Cohen—Macaulay and F-rational, regardless of the charac-
teristic.
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EXAMPLE 2. The alternating group. Assume char(k) # 2. Let A, act on
k[ X,,..., X,] by permuting the variables. The invariant ring produced
here is well known to be k[e,,...,e,, Al, where e, is the ith symmetric
polynomial and A = IT,_ ,(X; — X)) is the discriminant [Co]. This ring is
isomorphic to the hypersurface

kle\,....e,, Z)/(Z? — A?),

and so is Cohen—Macaulay (even Gorenstein) in all characteristics. The
F-rationality of this ring in characteristics dividing n!/2 = |A4,] is studied
in Part I1.

ExamMmpPLE 3. The cyclic group of order four in characteristic 2. Let C, act
on k[ X,,..., X,] by cyclic permutation of the four variables. Bertin [Be]
showed that the invariant ring k[X,,..., X,]°* produced here is not
Caohen—Macaulay, hence also not F-rational, in characteristic 2. (Bertin, in
the same paper, also shows this ring is a UFD, providing the first example
of a ring known to be a UFD and not Cohen—-Macaulay.)

ExaMpLE 4. The cyclic groups of prime power p* larger than four in
characteristic p. Fix a prime p. Let C,. act on k[X,,..., X,] by cyclic
permutation of the variables. Fossum and Griffith [FG] show that the
invariant ring k[ X,,..., X, p,]"r" is not Cohen—Macaulay in characteristic
p if p¢ > 4. (Some remarks: They also show that these rings are UFD’s
and that their completions at their homogeneous maximal ideals are also
UFD’s. Their techniques do not recover Bertin’s example, in which p¢ = 4.)
Moreover, they bound the depth of k[X,,...,XP.~] on its homogeneous
maximal ideal by

depth k[ X,,..., X, | <p™' +2.
(Note that the depth is significantly smaller than dim k[Xl,...,Xpe](‘/“,
which is p€)

In Part I, we extend their results to the general case of cyclic groups
whose order is divisible by char(k), finishing the analysis of the
Cohen—Macaulay property in k[ X|,..., X, 1.

PART I: THE INVARIANT RINGS BY CYCLIC GROUPS
THAT ARE NOT COHEN-MACAULAY

In Part I, we address an instance of the following question raised in the
introduction to this paper.
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QUESTION 1. Let G be a finite group and fix an embedding of G as a
subgroup of a permutation group S,,. This determines a k-algebra action of G
on k[X,,....,X,] via o(X)=X,,, o€G. For which choices of n,
G<S,, andkisklX,,..., X,1° Cohen-Macaulay?

Recall from 2.2 that this question has been answered when char(k) is
relatively prime to |G| In this case k[X,,..., X,]° is Cohen—Macaulay.
For other prior results on Question 1 see the introduction to this paper.

The instance we address is when G is the cyclic group of order n
embedded in S, in the usual way, so that a generator of C, is identified
with the n-cycle (12 -+ n). The action on k[ X, ..., X,] resulting from this
embedding is cyclic permutation of the variables (under which o (X,) = X,
o(X,))=X;,...,0(X,_)) =X,, 0(X,) = X,, where o is a generator of
C,).

We show in Theorem 7.2 that the invariant ring [ X,,..., X,] result-
ing from this action is not Cohen-Macaulay in the characteristics dividing
n for n > 4. Because the Cohen—Macaulay-ness of this ring is already
known for the other values of char(k) and n (see 2.2 and Sect. 3), Theorem
7.2 completes the analysis of the Cohen—Macaulay property in
k[X,,..., X,]°. In other words, we have answered Question 1 for the
natural embedding of C, in S, for any n and any k.

We achieve 7.2 by proving a result (Theorem 4.1) concerning the
nonfree locus (see Definition 1.2) of the action of any finite abelian group
G on very general rings R in characteristics dividing |Gl This resuit
asserts that, under suitable hypotheses, the defining ideal J of this locus
must have small depth in R or in RC.

From this theorem come two natural corollaries. First, assuming it is the
case that J has small depth in R, one derives in the usual way a
corresponding bound on the depth of R in terms of the height of the
ideal J in the graded case (Corollary 5.2). Second, because heights are
preserved in expanding from R¢ to R, J must have small height if R and
R¢ are both Cohen~Macaulay (Corollary 5.1).

Roughly speaking, each of these corollaries says that assuming R is
Cohen—Macaulay, R® will not be Cohen—Macaulay if J has large height.
Thus, the goal of understanding the Cohen—Macaulay property in R€
leads us to the problem of computing the height of J. This computation is
easily carried out in the situation of 7.2, giving our result on the character-
istics in which cyclic permutation of the variables in a polynomial ring
produces a Cohen—Macaulay invariant ring. If one could show that J has
“large height” for other embeddings G < §, where G is abelian, one
could similarly answer Question 1 in these instances: The resulting invari-
ant rings k[ X|,..., X,]¢ would not be Cohen—Macaulay in characteristics
dividing |G|.
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Section 7 also contains generalizations of 7.2 in which we find analogous
results for more general rings R (Theorem 7.1) or more general groups G
(Theorem 7.3).

4. THE DEPTH OF THE NONFREE LOCUS

This theorem finds that, for quite general actions of finite abelian
groups G on affine algebras R, the defining ideal of the locus where the
action is not free (see Definition 1.2) has small depth in either the
invariant ring R, or in R itself (i.e., the expansion of the ideal to R has
small depth).

Before giving the proof, we would like to relate Theorem 4.1 to the main
result, Proposition 4, of [Fol, which also bounds the depth of this same
ideal (the defining ideal of the nonfree locus) for certain actions by groups
on rings. Basically, the comparison is this: Their proofs use similar tech-
niques, but they study different types of group actions.

In [Fo] it is assumed that G is cyclic, R is local, and that action of G is
free on the punctured spectrum of R (i.e., G acts freely on all fibers,
except, possibly, on the one consisting of the maximal ideal of R). In
contrast, for our result, G is any finite abelian group, R is an affine
algebra, and we make no assumptions about where G acts freely. (Ad-
ditional hypotheses in the two theorems coincide.)

The lack of assumptions on the size of the nonfree locus is a critical
distinction, for in many of the situations in which 4.1 could be applied, this
locus is rather large. As an example, consider the case in which G = C,

permutes the n variables in a polynomial ring R = k[ X,,..., X)), k is
algebraically closed, and n > 1. RY C R has many one-element fibers: The
fiber containing a maximal ideal of the form (X, — A,..., X, — A), where
A is in k, can contain no other ideal because (X, — A,..., X, — A) is fixed

under the action. (See Section 1.) And the contractions to R of each of
these ideals are in the nonfree locus of Spec RY. (Their fibers are too
small for them to be in the free locus: See 1.4.) Thus, the nonfree locus has
considerable size in this example.

However, the basic technique used in the proof of Theorem 4.1 is very
similar to that used in Proposition 4 of [Fo]. Namely, one chooses the ideal
I in the spectral sequences of Proposition 1.1 to make many terms vanish,
thereby obtaining information about depths in R“. Because of his hy-
potheses, Fogarty is able to obtain such information on taking I to be the
maximal ideal of his local ring R¢. We choose the ideal I for our situation
from the following two observations. If [ is generated by elements that
form a regular sequence in R, then many terms of I will vanish because of
the sheaf cohomology on X. If [ is contained in the defining ideal of the
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nonfree locus, many terms of II will, as it turns out, vanish because of our
normal basis theorem in Proposition 1.3.

As a final note concerning Proposition 4 of [Fo], we observe that, even
in the case in which G is cyclic, one cannot simply localize the rings R to
which our theorem applies to obtain a situation in which Fogarty’s theo-
rem could be applied. To illustrate our point, consider the special case of
cyclic variable permutation in a polynomial ring. This situation has the
advantage that there is a minimal prime P < R¢ of the defining ideal of
the nonfree locus (in Spec R®) having a single prime Q in its fiber in
Spec R, as one sees from 6.2. Thus, G acts freely on the punctured
spectrum of the local ring R, so one is tempted to apply [Fo] to R, in
the hope of showing RY is not Cohen—Macaulay. However, a crucial
hypothesis of Fogarty’s Proposition 4 is missing: that G act trivially on
R,/QR,,. (Using 6.2, this ring is seen to be of the form A(X,..., X,,/q,),
where g; divides n, a ring on which the variable permuting action is
nontrivial.)

4.1. THEOREM. Let R be a domain finitely generated over a field k, and
suppose a finite abelian groiup G acts on R by by k-algebra automorphisms.
Assume

(1) char(k) divides |G|, and

(2) there is a G-stable maximal ideal m for which G acts trivially on
R/m.

Let J C RC be an ideal defining the locus in Specmax R where the action
of G is not free (see 1.2). Then depth; R® < 2 or depthzR < 2.

Proof. Our first objective is to show that the group cohomology
H'(G, R) is nontrivial, as a consequence of (1) and (2). To do this, we first
note that k, considered as a k[G]-module via the trivial G-action, splits off
from R in the category of k[G]-modules. For we have k[G]-linear maps

k—=R—->R/m -k,

where k — R is the natural inclusion, R — R /m is the natural surjection,
and R/m — k is a k-linear splitting of £ from its extension field R /m.
(We are using that G acts trivially on R/m when we claim that the map
R/m — k is klG]-linear, since G acts trivially on k.) Also, the composi-
tion k — k is the identity. Consequently, H'(G, k) is a direct summand (as
a k[G]-module) of H'(G, R), so it is enough to see that H'(G, k) is
nonzero.

Let N denote the kernel of the k{G]-linear map k[G] — k sending 1 to
1 (and so o is sent to 1 for all o € G, because k has the trivial G-action).
Then N is a first module of syzygies of k as a k[G}-module, so H'(G, k)
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= Ext;((k, k) = Hom, (N, k). Thus, to see H'(G, k) # 0, it suffices to
find a nonzero k[Gl-linear map N — k.

We now construct such a map. Let N, denote the kernel of the
Z|Gl-linear map Z[G] — Z under which 1 maps to 1 (where Z is given the
trivial G-action). N, is a free Z-module with basis given by the elements
o — 1, as o ranges over the elements of the group G [HS).

Fix a subgroup H of G of index p. Consider the composition of the
Z-linear surjection N, — G, given by o — 1 = o, with the quotient map
G - G/H = Z/pZ. The composition is a nonzero Z-linear map

Ny = Z/pZ

sending o — 1 to an element n(o + H) € Z/pZ corresponding to the
coset o + H.
Tensoring with & now produces a k-linear map

b ke, N> ko, Z/pZ =k,

and k ®, N, is isomorphic to N as k[G]-module. (The obvious k-vector
space isomorphism between the two is k[G]-linear as well.) Thus, we have
a map ¢: N — k. This map is easily checked to be k[G]-linear and to
assign a nonzero value to any element 7 — 1 whenever r € G\ H. This
completes the argument that H'(G, R) # 0.

Now, suppose depth,R® >3 and depth,zR > 3. Using prime avoid-
ance, find elements u,u,,u; in J that are a regular sequence both in R¢
and in R. Let I be the ideal (u, u,, u;). _

Let X = Spec R, Y = Spec R®, X = X\ V(IR), and Y = Y\ V(I), and
let I, IT denote the spectral sequences from Proposition 1.1,

1: HY(G, H? (X, &)
II: H7(Y,H9(G, &%),

so HY(G, @, ) is the sheaf associated to the presheaf on Y that sends an
open set U to HUG, H(V,y)), where V is the inverse image of U
under X — Y.

Our next objective is to use the normal basis theorem (1.3) to show that
the higher sheaves HY(G, &#y) necessarily vanish. Fix ¢ > 0 and let &
denote the presheaf on Y described in the last paragraph (from which we
obtained HY(G, #,)). Fix a maximal ideal m in Y, and let {n); be the
(finitely many) maximal ideals lying over m. We will show that the stalk of
F at m is zero. (Then HY(G, &) = 0 because it has the same stalks.)

RS — R, is étale, so we may apply Proposition 1.3 to the semilocal
domain R,, = (R°\ m)™'R = (R\ Un,;)"'R. This proposition gives an a
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and b in R (with b & U ;n;) such that

o'(a)
oi(b)

(R\ U;n)"'R = &% RS

Because R is module-finite over R®, we can then find a g € R% \ m such
that

ie, R, = R ® k[G]as k[G}-modules.
We now proceed to show that %, = lim HY(G, Rf) is zero. Given

X L fem
f € RY\ m, we are to find an h € (fRY)\ m such that HYG, R,) = 0.
Let A = fg, with g as above. Then

R, =R ® k[G]

as a k[G]}-module, and so is free over k[G]. R, is then also injective over
k[G] because k{G]is an Artin Gorenstein ring. (The group ring k[G] of a
finite abelian group G over a field k is well known to be Artin Gorenstein.
One way to see this is the following: The group ring of a cyclic group is a
hypersurface, and the group ring of a product of groups is the tensor
product of the group rings. In any case, it is also in [CR].) Consequently,

H'(G, R,) = Ext{,s,(k, R§ ® k[G]) = 0.

This completes the argument that the higher HY(G, #, ) vanish. Hence, we
now know that the terms I¥9 of the spectral sequence II also vanish for
q>0. )

We next note that HYG, #y) = &,, as sheaves on Y. Let ¥ be the
presheaf on Y from which we obtained H(G, & ). For each basis element
D(f) € Y, we have isomorphisms

F(D(f)) = R} = &,(D(f))

that commute with the restriction maps on % and &y, so they induce an
isomorphism of the sheaves

HY(G,5,) = &y.

We have now shown that the spectral sequence II collapses, in the sense
that I179 = 0 for g > 0. Thus, the E¥? terms II79 are also the Ef7 terms
for the sequence II, since the sequence II comes from a double complex.
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Since the spectral sequence I has the same abutment as II, and the latter
converges to 11" = H"(Y, @,), we have 171 & H"(Y, ).

Because the ideal [ is generated by a elements that form a regular
sequence in R, the nonzero terms among the 179 occur in only two rows.
More precisely,

0 if p#0,2
17e = [ HY(G,H}(R)) ifp=2
H9(G,R) if p = 0.

We next use the above information to show that the term E£! of the
sequence 1 is isomorphic to the first group cohomology H (G, R). Since g
is the filtration degree for 1, the boundary maps are

Pq . Fp4 p-r+l.g+r
dP? . EPY4 — E! ,

and d?? = 0 unless p = 2 and r = 3. Thus, the E, term of this spectral
sequence is the E, term, and in each spot of this complex there are at
most two nonzero graded pieces:

Er=El = E}n 2@ EM.
E] has, at most, a single nonzero graded piece (because EZ ' = 0):
1 [12 - 01
E! =E" = E).

But E{" is the cohomology at EY!

d:;.,»l dg”
— 2, -2 01
0= E} 120 EN S

ey

and both of these maps are zero, so E)' = E}', which, in turn, is isomor-
phic to EJ' = I" because d, = 0. Thus,

E!=1" = H'(G,R).

Writing F; for the ith filtered piece of the filtered module E! = 1', we
have shown

H'(G.R) = EV = -

b g Fz
(since the index g indicates the filtration degree). Recalling 179 =
H"(Y, &), we see that F, /F, is a graded piece of an associated graded of
the module H'(Y, #,). Since the filtration of a double complex is finite in
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each spot (i.e., the F; are eventually zero) we must have that F, = 0 and
F, = H'(Y, #,). Therefore,

H'(Y,®,) = F, = H'(G,R).

But H'(Y,#,) = H}(R®) = 0 because I has depth three, and we showed
that H'(G, R) # 0. Thus, it must have been the case that depth,R® < 2
or that depth,, R < 2.

5. COROLLARIES TO THE MAIN THEOREM OF PART I

In this section, we derive two corollaries from Theorem 4.1 that will be
applied in Section 7, where we discuss the Cohen—Macaulay property in
the invariant ring by cyclic variable permutation. The first of these (5.1)
says that a certain ideal (J) must have small height if R and R are
Cohen~Macaulay.

5.1. COROLLARY. Let R, G, and ] be as in Theorem 4.1. If R and R are
Cohen—Macaulay, then ht J < 2.

Proof htJ = htJR (because R® C R is module-finite), and this is
equal to depth, RY and depth xR if R and R are Cohen—Macaulay.

The second coroilary (5.2) obtains a bound for the depth of the invariant
ring in the graded case.

5.2. COROLLARY. Let R, G, k, and J be as in Theorem 4.1. Suppose R is
an N-graded k-algebra with [R), = k, and the action of G on R preserves
degrees (so R is also N-graded). Assume depth,, R > 2. Then

depth RY < dim R — ht J + 2,

where depth RY is taken on the homogeneous maximal ideal of R°.

Proof. We can add dim R® — ht J elements to J to generate the
homogeneous maximal ideal of R® up to radicals. Thus, depth R¢ <
depth,; R® + (dim R® — ht J). (The depth increases by at most one for
each element added to the supporting ideal, due to Nakayama’s Lemma.)
The result now follows from dim R® = dim R (R is module-finite over
RY) and depth ;R < 2 (which we know from 4.1).
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6. A BOUND ON THE CODIMENSION OF THE
NONFREE LOCUS FOR CYCLIC
VARIABLE PERMUTATION

The two corollaries in the previous section lead us from the problem of
studying the Cohen—Macaulay property in rings R satisfying the hypothe-
ses of 4.1 to the problem of computing the codimension of their nonfree
locus (i.e., computing the height of the ideal J in 4.1). In this section, we
show a lower bound for this codimension in a special case (Proposition
6.2). This is the case in which G = C, cyclically permutes the images of
X,...,X, in a graded domain k[X,,..., X,]/P and k is algebraically
closed. (P is, of course, chosen such that this action is well-defined.) The
other proposition in this section (6.1) reduces the Cohen—Macaulay issue
in invariant rings of k-algebras to the case in which k is algebraically
closed. In Section 7 we will combine these results with the corollaries from
Section 5 to analyze the Cohen—-Macaulay property in invariant rings like
those described above, but where & is not required to be algebraically
closed.

6.1. PROPOSITION. Let R be a ring that is N-graded and finitely generated
over [R], = k, a field. and let R=k ®, R, where k is an algebraic closure of
k. Let G be a finite group that acts on R by degree-preserving k-algebra
automorphisms. Then

depth R = depth R®,

where RC refers to the induced k-algebra action of G on R and each depth is
on the homogeneous maximal ideal.

Proof. The induced k-algebra action of G on R is that determined by
ola®r)=a®co(r)force G, ack, reRr.

We first note that & ® RY = RY as k-algebras. R® is the intersection
of the k-modules

R =N,csker(c —1,: R > R)

(where in writing o — 1;: R - R we are identifying the elements of G
with the k-algebra automorphisms they induce on R). Commuting the
faithfully flat base change k& ®, with the above finite intersection gives

k®R° =N, ..k ®ker(c—1,: R > R)
= ﬂ,,e(;ker(a'— lG:I_Q—’R)
= RC.

The composition is a k-algebra isomorphism k ® R® = RC.
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Thus, R¢ is flat over R, and the homogeneous maximal ideal of RS is
the expansion of that of R®. Therefore,

depth RY = depth RC.

(Explanation: If m is the homogeneous maximal ideal of R and x,..., x,,
is a maximal R®-sequence in m, then the images of x,,...,x, are an
RC-sequence in mRY, and R®/m injects into RS /(x,,...,x,), R-lin-
early. But then R®/mR® injects into R® /(x,,..., x,)R®, R linearly, so
Xy,..., X, iS a maximal EG-sequence in mRC¢, the homogeneous maximal
ideal of RY)

We now compute the bound on the nonfree locus for cyclic variable
permutation over an algebraically closed field.

6.2. PROPOSITION.  Let G be the cyclic group of order n with generator o .
Let R be the ring

R kK[X,,....X,] ’

P
where k is an algebraically closed field and P is a homogeneous prime that is
stable under the k-algebra action of G under which o(X)) = X ,,.

Consider the induced k-algebra action of G on R that permutes the images
of X,,..., X,. Let V denote the nonfree locus in Specmax R (see 1.2 for the
definition of this locus) and let Z denote its inverse image in Spec R, which
lies in Specmax R since R® C R is module-finite. Then Z is defined by

n
j-;](w(X,-) - 7""(’Yn/q/h’):1 <i< (qj - 1)'q— ’

j
where q,, ..., q, are the primes dividing n, and w(X,) denotes the image of X

in R. Furthermore, we have

n
htJ>dimR - —,
Po

where p, = min{q,, ..., q,}), and J C RC is a defining ideal for V.
Proof. We first find the defining ideal of Z, using the description of the

nonfree locus from 1.4. Let o : k[ X|,..., X,] = R be the natural surjec-
tion. Fix a maximal ideal m, == (X, — A,,..., X, — A,) containing P,
where A, ..., A, € k. We are to show that Stabw(m,) is nontrivial if and

only if m, contains the prescribed ideal.
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The cyclic group G = C, has as its minimal nontrivial subgroups

{an/ 1y, . (a"/4),

so, Stab,,7(m,) is nontrivial precisely when it contains one of these cyclic
subgroups, i.e., when there exists j such that ¢"/%(m,) = m, mod P. But
P is contained in both of these ideals m, and o”/%(m,) (using that P is
G-stable). Thus, Stab;w(m,) # 1 if and only if there is a j for which

O,n/‘hmA = m)‘,

i.e., every n/q;th coordinate of the vector (A,..., A,) is the same, i.e.,

n
mA 2 (XI —Xn/t]‘+i :1 < l < (qj - 1)_)s

J

ie, wlmy) 2 (w(X) - m(X,, ):l<i<(q - 1Xn/q;). Thus, the
defining ideal is as claimed.

We next show the lower bound on the height of J. First note ht J =
ht(JR) because RY C R is module-finite. Now, let Q, denote the ideal

n
(“(Xf) - W(Xn/qﬁf):l <i<(q - 1)5‘)

We have ht(JR) = ht(N; Q;) because these two ideals define the same
closed set in Specmax R and R is finitely generated over a field (so that
these two ideals must have the same radical, and hence the same height).
Thus, it suffices to show ht(N;Q;) = dim R — n/p,, i.e., that ht 0, >
dim R — n/p, for all j. But, Q; produces a quotient ring R/Q; that is
itself a quotient of A[X,,..., X,]/(X, - X,,,,, 1 <i<(q;,— Dn/q)
=klXx,,..., X,,/q,]. Thus, ht Q; > dim R — n/q;, as desired.

7. THE CHARACTERISTICS IN WHICH CYCLIC
VARIABLE PERMUTATION PRODUCES A
COHEN-MACAULAY INVARIANT RING

This section contains one of the two main results of the paper—a
complete description of the characteristics in which cyclic permutation of
the variables in a polynomial ring produces a Cohen—Macaulay invariant
ring (7.2).

Indeed, we show a more general result (7.1) that accomplishes the same
task (i.e., describes the characteristics in which the Cohen—Macaulay
property holds) for a larger class of invariant rings, except in low dimen-
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sions. As it happens, the Cohen—Macaulayness of the “low dimensional”
examples arising in the situation of 7.2 is known from Section 3, so that 7.2
will follow directly from 7.1.

We also prove a generalization of 7.2 to products of cyclic groups acting
on a polynomial ring by permuting disjoint variables (7.3).

We first make an easy observation, to be used in Theorem 7.1, that
strengthens Proposition 2.2. This observation is basically that in the graded
case, one can weaken the hypothesis that R be regular to R just being
Cohen-Macaulay and still conclude that R is Cohen—Macaulay. That is,
when a finite group G acts by ring automorphisms on a Cohen—Macaulay
graded ring R and |G| is invertible in R, then R¢ is Cohen—Macaulay. To
see this, note that a homogeneous system of parameters for R® remains a
homogeneous system of parameters in R (because RY C R is module-
finite). This system is then a regular sequence in R, and hence in RY,
because ideals of the direct summand R are contracted from R.

Thus, under very general hypotheses, if R is Cohen—Macaulay and
char(R) does not divide |G|, then R® is Cohen—Macaulay. Theorem 7.1
presents a sort of converse: It states that, for certain actions on
Cohen—Macaulay rings R, R® can only be Cohen—Macaulay in these
special characteristics. In addition, 7.1 bounds the depth when R is not
Cohen—Macaulay. This bound is usually considerably smaller than the
dimension, a point that is illustrated in the application 7.2.

7.1. THEOREM. Let G be a cyclic group of order n, with generator o. Let
R be a ring of the form
k[ X,,...., X,
o KX X
P

where k is a field and P is a homogeneous prime stable under the k-algebra
action of G under which o(X)) = X ,,.

Consider the induced k-algebra action of G on R that permutes the images
of X;,..., X,. Assume

(1) R is Cohen—Macaulay,

2 k ® R is a domain, where k is an algebraic closure of k (i.e.,
Pk[X,,..., X,]) is prime), and

(3) dim R > 2 + n/p,, where p, is the smallest prime dividing n.
Then R® is Cohen—Macaulay if and only if char(k) is relatively prime to n.
Furthermore, if RY is not Cohen—Macaulay, then depth RY < 2 + n/p,.

Remark. Note that even if the dimension of RY (i.c., dim R) is signifi-
cantly larger than 2 + n/p,, its depth is still < 2 + n/p, when R is not
Cohen—Macaulay.



846 DONNA GLASSBRENNER

Proof. 'The “if” part follows from the paragraphs preceding this theo-
rem.

Now, assume char(k) divides n. Using 6.1, reduce to the case in which k
is algebraically closed. Let J be as in Theorem 4.1. (That is, J defines the
nonfree locus in Specmax R®.) In 6.2, we computed ht J > dim R — n/p,,
so the result now follows from Corollaries 5.2 and 5.1. (In these corollaries,
which require the hypotheses of Theorem 4.1, we may take s to be the
homogeneous maximal ideal of R.)

We isolate the case P = (0) of Theorem 7.1, yielding one of the major
results of the paper: an analysis of the Cohen—Macaulay property in
invariant rings of polynomial rings by cyclic permutation of the variables.
Again, this extends results of [FG], which contains the special case of 7.2 in
which n is a power of char(k).

7.2. THEOREM. Consider the k-algebra action of the cyclic group C, of
order n on the polynomial ring k[X|,..., X,] that cyclically permutes the
variables. (That is, consider the k-algebra action determined by

o(X,) =X,
a(Xy) =X,
U(anl) =Xn
U(Xn) =X1’

where o generates C,.)

Then k[ X,,..., X, ] is Cohen—Macaulay if and only if char(k) is rela-
tively prime to n or n < 3.

Furthermore, if k[ X,, ..., X,I" is not Cohen—Macaulay, then

n
depth k[ X,,..., X, ] <2 + —,
Po

where p, is the smallest prime dividing n.

Remark. Note that the bound on the depth of k[ X,,..., X, when
this ring is not Cohen—Macaulay is usually significantly smaller than the
dimension, which is n.

Proof. Recall from 2.2 (or from the paragraphs preceding 7.1) that
k[X,,..., X,I is Cohen—Macaulay when char(k) does not divide n.

As for the examples where n < 4 and char(k) divides n, see Section 3.

The rest (i.e., n > 4 and char(k) divides n) follows from 7.1. That is, if
n >4, then n =dimk[X,,..., X,] is easily checked to be larger than
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2 + n/p,. Theorem 7.1 then applies to give that k[X,,..., X,]°" is not
Cohen—-Macaulay, and depth [ X,,..., X, 1" < 2 + n/p,. (Note that this
bound is strictly smaller than the dimension when n > 4.)

Another natural (and virtually immediate) generalization of Theorem
7.2, is to certain actions by products of cyclic groups.

7.3. THEOREM. Consider the action of a finite abelian group
G=C X...x(,

that “permutes disjoint variables” in the polynomial ring k[ X,, ..., X,,]1 where
n = LIAC,|. That is, embed G in S, so that the generator of C; is identified
with the permutation

i-1

Z!CI+IZIC|+2 DM AT

j=1 j=1 j=1

and then let G act on k[Xl,...,X 1 according to the k-algebra action
determined by (01 X aXX) =X, .y where g, € C, forallj.
Then k[ X,..., X, ]G is Cohen—Macaulay if and only 1f

(1) char(k) is relatively prime to |G|, or
(2) char(k) = 2 or 3, and every factor C; whose order is divisible by
char(k) has order equal to char(k).

Proof. We have
k[X,,...,X,]1°=R" & ...® RS,

where R; C k[X],..., X,] is the polynomial ring in the |C;| variables on
which C acts. Spemfxcally, R = K Xgvc o - - » Xy e} Thus,
k[X,,..., X, is Cohen- Macaulay if and only if each RC' is. The result
now follows from Theorem 7.2.

Remark. One could also try to obtain 7.3 by computing the codimen-
sion of the nonfree locus of the action. (In other words, one could try to
give a proof of 7.3 that is analogous to the proof of 7.2.) However, this only
gives the partial result that if k[X,..., X,]° is Cohen-Macaulay and
G # 1, then G must have a factor of C, or C;. One cannot tell from this
information whether, for instance, the group G = C; X Cy produces a
Cohen—Macaulay invariant ring in characteristic 3 (whereas we know from
7.3 that this invariant ring is not Cohen~Macaulay).

Note that Theorem 7.3 does not answer Question 1 for finite abelian
groups G. That is, Theorem 7.3 only answers Question 1 for a particular
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type of embedding of a finite abelian group G into a permutation group,
namely, one in which the generators of the cyclic factors are identified
with cycles involving disjoint letters.

Of course, there can be more than one embedding of this type for a
given group G. For instance, C, = C, X C; may be embedded into S, by
identifying its generator with the cycle (123456), or into S5 by identifying a
generator of C, with (12) and a generator of C, with (345).

There are also embeddings that are not of this type. As an example,
consider the group

G=0C,xC,

and embed it into S, by identifying an element ¢ € G with the permuta-
tion of the four elements of G given by multiplication by o. Explicitly, this
identifies the generator of one factor of C, with (12)(34) and the genera-
tor of the other factor of C, with (13)(24), up to a reordering of the letters.
This embedding of G into S, determines an action of G on
K[ X,, X,, X;, X,] as described in Question 1. We now ask: Is
k[ X,, X,, X5, X,] Cohen—Macaulay? Theorem 7.3 is of no use here
because it does not apply to this type of embedding of G into §,.

Thus, given a finite abelian group G, we can answer Question 1 for
certain types of embedding of G in a permutation group. What about for
other embeddings? Theorem 4.1 might be of use: What is needed is a
computation of the codimension of the nonfree locus (i.e., the height of J
as in 4.1). If this height is large enough, then the corollaries of Section 5
will give information about the Cohen—Macaulayness of k[ X|,..., X, 1°.

Although we have focused on the application of 7.1 to polynomial rings
(i.e., the special case of 7.1 in which P = (0)), it is also interesting to apply
this theorem to P # (0) of small height. For a simple example, fix a
homogeneous polynomial h € k[ X|,..., X,] that is irreducible over the
algebraic closure of k and invariant under cyclic permutation of the
variables. (For instance, & = X? + -+ +X? will do when char(k) # 2 and
n = 3.) Now, consider the action of C, on

k(X,.....X,]
(h)

that permutes the images of X,..., X,. Theorem 7.1 tells us that for
n > 6, the invariant ring R is Cohen-Macaulay in precisely those
characteristics relatively prime to n. Moreover, 7.1 gives us a significant
bound on the depth when this ring is not Cohen—Macaulay: depth R¢» < 2
+n/p,, p, being the smallest prime dividing n, as compared with
dim R» =n — 1.

R =
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PART II: INVARIANT RINGS BY ALTERNATING
GROUPS THAT ARE NOT F-RATIONAL

In Part I1 we address an instance of the following question raised in the
introduction to this paper.

QUESTION 2. Let G be a finite group and fix an embedding of G as a
subgroup of a permutation group S, . This determines a k-algebra action of G
on k[X,...,X,] via o(X))=X,,, o€ G. For which choices of n,
G<S,, andkisklX,,..., X,]° F-rational?

Recall from 2.2 that this question had previously been answered when
char(k) is relatively prime to |Gl: In this case k[ X,,..., X, I° is F-rational.
This was essentially the only progress on this problem, as we explained in
the introduction to this paper.

The instance we address is when G is the alternating group A4, embed-
ded in S, in the usual way (so that A, is the subgroup of S, consisting of
the even permutations).

We show in Theorem 12.2 that the resulting invariant ring
k[ X,,..., X,)*» is not F-rational for a certain class of n and p = char(k).
Indeed, in Theorem 12.3 we show that their non-F-rational loci have
positive dimension, so that these rings do not merely fail to be F-rational
at their localizations at some maximal ideals.

These results are somewhat surprising because the rings k[ X,,..., X, ]
possess the major properties of graded F-rational rings. Namely, we know
from Sections 1 and 2 that k[ X|,..., X,]*" is a normal Cohen—Macaulay
F-injective (even F-pure) domain with a negative a-invariant.

Admittedly, the line of argument through which we obtain the results of
Part II is not as interesting as the line of argument in Part 1. The argument
in Part I used powerful results (the normal basis theorem of 1.3 and the
spectral sequences of 1.1) with which we related the Cohen-Macaulay
issue to an entirely different issue—the size of the étale locus of
kKX,,...,X,)¢ cklX,,..., X,). Furthermore, one result (Theorem 4.1)
might apply to further studies of Question 1 not covered in this paper, as
we explained at the end of Section 7.

In contrast, the line of argument in Part II is much more specific to the
particular rings under consideration and brings in less interesting concepts.
For in 9.1, the issue of F-rationality in k[X,,..., X, ]~ is reduced to an
ideal membership problem in the ring, which we then solve for certain
values of » and char(k). The ideas we develop en route do not seem to be
applicable to studying Question 2 for G # A4,.

Given this, why is it interesting to look at this example? We see two
reasons.
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One reason is that it adds to the collection of examples that fail to be
F-rational but not for any obvious reason. That is, as we mentioned above,
the rings k[X,,..., X,]*" have all the major characteristics of a graded
F-rational ring, so that their failure to be F-rational is not easily explained.
Such a collection is obviously useful in the study of F-rationality. (See
Section 8 for a completely different set of examples in this collection.)

The second reason is that it gives the first nontrivial answer (other than
Proposition 2.2) to a basic question (Question 2) about tight closure.
Eventually one would like to know what properties of n, G < §,, and k
make k[ X,,..., X,]° F-rational.

The main reduction in the problem occurs in Sections 9 and 10. In
Section 9, we explain how the usually challenging task of deciding weak
F-regularity becomes significantly more feasible in the rings
k[ X,,..., X,]°. (It becomes a direct summand issue: See Proposition 9.1.)
This information will be useful to us because weak F-regularity coincides
with F-rationality in Gorenstein rings such as k{ X, ..., X, ]*". It is through
this information that we reduce the F-rationality to an ideal membership
problem in 10.1.

Starting in Section 11, we focus on solving the reduced problem. Section
11 contains lemmas used to solve this problem in Theorem 12.1. The
F-rationality is now (negatively) decided. We state these findings in Theo-
rem 12.2. Theorem 12.3 is a sharpening of 12.2 in which the non-F-rational
locus is shown to be of positive dimension.

8. A PREVIOUSLY KNOWN EXAMPLE

This section contains an example of a ring that is vastly different from
the rings k[ X,,..., X,)"= but has the same interesting combination of
properties. Specifically, the ring R below is a normal graded F-pure
Gorenstein domain with a negative a-invariant, but is not F-rational. Using
techniques analogous to those in the proof of 12.3, one can deduce from
this information that the non-F-rational locus of R must, furthermore,
have positive dimension.

ExamMpLE. Consider the graded normal domain
k[X,Y,Z, W]
(XY 7Y

R is easily checked to have a negative a-invariant in all characteristics and
to be F-pure in characteristics p for which p = 1mod3. (The g-invariant
of a hypersurface is well known to be the degree of the equation minus the
sum of the degrees of the variables. Using the criterion of [Fe), the
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F-purity of this ring amounts to the easily verified claim that (X° + Y* +
Z3)P~' & (XP,YP, ZP) when p = 1 mod3.)

However, R cannot be F-rational, no matter what the characteristic is:
The F-rationality of a Gorenstein ring passes to direct summands (see
[HH1)), but the direct summand

k[X,Y,Z]
(X*+Y3+ 2%

cannot be F-rational, since its a-invariant is zero (see 2.3). Thus, the ring
R, considered in characteristics p = 1 mod 3, has the desired properties.

One sees from this example how to construct similar rings with the same
properties: Construct a hypersurface

KX, X,]
(f)

with »# > 3 according to the following requirements on the polynomial f
and on p = char(k).

H =

1. f is homogeneous for some assignment of deg X; > ( and deg f
= X,deg X,. (This makes a(H) = 0.)

2. f has an isolated singularity. (This ensures normality because
n=3)

3. fP'e(X/F,..., XP). (This ensures F-purity [Fe].)

A similar argument now shows that R := H[W] is a graded normal
F-pure Gorenstein domain with a(R) < 0 but that R is not F-rational.

9. TIGHT CLOSURE IN THE RINGS k[X,,..., X,I¢

In this section we consider the general problems of studying tight
closure in the rings k[ X, ..., X,,]G. Of course, we really have Question 2
in mind, so we will also relate this information to Question 2. Specifically,
our synopsis of the general problem contains a restatement of Question 2
as an ideal membership problem in the case of Gorenstein rings
kK[ X,,..., X,I°. (This is in Proposition 9.1.) The rest of the synopsis is a
summary of pertinent results from Sections 1 and 2.

There are some important advantages that the rings k[X,,..., X,]¢
have from the point of view of studying tight closure. Perhaps the most
important is that the usually challenging task of deciding weak F-regularity
becomes significantly more feasible in the rings k[ X,..., X, I¢. The issue
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is simply whether k[X,,..., X,]¢ ck[X,,..., X,] splits (9.1, part (2)).
(Recall from Section 2 that a ring is weakly F-regular when all its ideals
are tightly closed. The main properties of weak F-regularity used in this
section are that it implies F-rationality and the two coincide in Gorenstein
rings.) If k[ X,,..., X,]¢ is Gorenstein, the issue is yet more concrete, for
it is simply an ideal membership problem (9.1, part (4)).

Another advantage is that the rings k[ X,,..., X,]° have many of the
characteristics of graded F-rational or weakly F-regular rings. We list these
properties in 9.1, parts (1) and (3).

Before continuing the discussion, we verify these assertions.

9.1. PROPOSITION. Let R be the polynomial ring k| X,,..., X,] over a
field k. Consider the k-algebra action of a finite group G < S, on R deter-
mined by o(X;) = X,,,, for 0 € G. The ring of invariants has the following
properties.

(1) RE is a graded normal F-pure domain.

(2) R is weakly F-regular if and only if it is a direct summand of R as
an RY-module. In particular, if R is Gorenstein, then it is F-rational if and
only if it is a direct summand of R.

(3) If RY is Cohen—Macaulay, it has a negative a-invariant.

(4)  Assume RC is Gorenstein. Then R is F-rational if and only if it
has a homogeneous system of parameters y,, ..., v, with socle element u for
which u & (y,,..., y,)R.

Proof. All follows immediately from Sections 1 and 2, except for the
statement in part (4) that u & (y,,..., y,)R implies R is F-rational. This
implication follows from a result in [HR2]: According to Proposition 5.8, p.
151 in [HR2] (which uses that R¢ is Gorenstein and R C R is a
module-finite degree-preserving map of graded rings), to see that R C R
splits, we only need to check that

(y1---¥0) uE (¥, )R forallrx 1.

(In other words, recalling that (y,...y,)" 'u generates the socle for
Yis---»¥,, this is saying we only need to check that the countably many
ideals (y{,...,y;) are contracted from R.) But this follows from the
hypothesis u & (y,,...,y,), because y,,...,y, is a regular sequence in R.
(Indeed, y,,...,y, is a homogeneous system of parameters in R, because
they are homogeneous in R and the ideal they generate in R has height
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ht(y,,...,y,)R = ht(y,,..., y,)R® = n.) That is, from the assumption that

(yi...y ) 'ue(y,...,y )R for some t > 1, one deduces that u €
(y;,..., ¥, R, contradicting our hypotheses.
So here we have a class of rings (the rings k[ X, ..., X,,1°) that are good

candidates for weakly F-regular rings, and more importantly, their weak
F-regularity is decided by the following natural question.

9.2. QUESTION. What properties of n, G < S,, and k make
k[X,,..., X, 16 cklx,,..., X,] split?

As with Question 2, there were essentially no results on this with the
exception of 2.2. That is, prior to this paper one could only give trivial
answers to 9.2 in characteristics dividing |G|. (Namely, Example 1 in
Section 3 splits because k[ X,,..., X, is regular (hence weakly F-regu-
lar). Example 4 in Section 3 does not split in characteristic p because
K[X,,..., X, 1% is not Cohen—Macaulay (hence not weakly F-regular).)

Of course, Question 1 points out a shortcoming of the rings
k[X,,..., X,]°—that there are relatively few instances in which we know
whether k[X,,..., X, 1 is Cohen—-Macaulay, a precondition for F-ra-
tionality. However, this need not be disadvantageous to our study, for it
may be easier to decide if k[X|,..., X,1° Ck[X,,..., X,] splits than to
decide if k[ X,,..., X,]1° is Cohen—Macaulay. (So, in a way, the shortcom-
ing provides an added incentive: If one can show the extension

k[X,,...,X,]° ckl[X,,..., X,] to split in a particular instance, then one
has also shown the ring k[ X|,..., X,]° to be Cohen—Macaulay.)
This concludes our general discussion of tight closure in k[ X, ..., X,1°.

We next focus on the case in which G = A4,,.

10. NOTATION AND PRELIMINARY REMARKS
ON THE F-RATIONALITY OF k[X,,..., X, 4"

We now begin the attack on deciding the F-rationality of
k[ X,,..., X,]% In this section we formulate a specific ideal membership
problem (10.1) in this ring that is equivalent to deciding F-rationality. We
also set up some parameters and notation that will be used in subsequent
sections to answer 10.1. We will only be able to answer 10.1 for certain
values of n and char(k).

Our goal is to decide whether k[ X,,..., X, ]*» is F-rational. Of course,
the action of 4, that we are considering is the variable permuting k-action
under which o(X)) = X_,, for c € 4,.

First, we set up some restrictions on the parameters char(k), which we
will denote by p and n. We assume n and p are at least three. Also, since
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k[X,,..., X,]* is already known to be F-rational in characteristics rela-
tively prime to |A4,| = n!/2 (see 2.2), we assume p = char(k) falls within
the range 3 <p < n.

Next, we reduce the problem to one of ideal membership. Recall from
Example 2 that k[ X,..., X,,]A" is Gorenstein with homogeneous system
of parameters e, ..., e, and socle element A (where, as in Example 2, ¢,
indicates the elementary symmetric polynomial of degree i in X|,..., X,
and A is the discriminant T, (X, — X})). Thus, part (4) of Proposition
9.1 reduces deciding the F-rationality of k[ X|,..., X,]1*" to answering the
following very concrete question:

10.1. QUESTION. [Is the element A in the ideal (e,,...,e k[ X,,...,
X,0?

Explicitly, if the answer to 10.1 is “No” for a particular n and p, then
the ring k[ X,,..., X, ]*» is F-rational for this n and p = char(k). If the
answer is “Yes,” then k[ X,,..., X,]*~ is not F-rational for this n and p.

We fix some notation that will be used in answering Question 10.1.

Notation for 11.1, 11.2, and 12.1. Forl1 <k <nand 1 <i <k, let

>4
fe
Il

IT (X -X)

l<i<j<k
k-1
& = lj[l (X —Xk) = (X, ‘Xk)(Xz - Xy) (X "Xk)

e®) = the elementary symmetric polynomial of degree i in X;,..., X,

el = 1.

11. LEMMAS CONCERNING THE ELEMENTARY
SYMMETRIC FUNCTIONS

This section contains lemmas about the elementary symmetric functions
that will be applied in Theorem 12.1. See the end of Section 10 for the
notation used in this section.

The following easy lemma expresses the elementary symmetric functions
in the variables X,..., X, in terms of X, ., and the elementary symmet-
ric functions in X,,..., X, .

11.1. LEMMA. Fixiand k. Then e = T}_ (-1 /X[ jel** Y.

Proof. Fixing k, the argument is a simple induction on /, noting that



RINGS OF INVARIANTS 855

(k) — (k+1) _ 3
et = ey X6
for0<i<n-—1.

We apply Lemma 11.1 to express the elementary symmetric polynomials
in n — 1 and n — 2 variables in terms of those in n variables.

11.2. COROLLARY. For fixed i and k, we have

i
P = T (= 1) R e
j=0

i _ o
e V= LN (T,
j=0k=0

Proof. These are immediate from Lemma 11.1.

12. THE F-RATIONALITY OF k[X,,..., X,]*

This section contains the main result of Part II, that k[ X|,..., X, ]*" is
not F-rational in certain of the characteristics that divide | A, | (Theorem
12.2), and indeed fails to be F-rational in a significant way (Theorem 12.3).
This result is preceded by a lemma (12.1) that solves an ideal membership
problem (Question 10.1) to which the F-rationality issue was reduced in
Section 10.

Lemma 12.1 answers Question 10.1 in certain characteristics.

12.1. LEMMA. Consider the polynomial ring k[X,,..., X,] with n > 3
over a field k of positive characteristicp. Lete, € k[ X,,..., X)), for 1 <i <
n, be the ith symmetric polynomial, in X|,..., X, and let A =TI, (X, -
X))

JThen Aele,....,e)klX,,.... X, ] if n =0 or 1 modp. (And actually,
Ae(e,...,e, DklX,,..., X,]ifn =0mod p.)

Proof. This proof uses notation (e.g., §,) established at the end of
Section 10.
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Using Corollary 11.2, and recalling that e; = ¢!, we rewrite §, and
8,_, modulo (e,,...,e,) as

n—1 n—1

8,=TT(x,-X,) = ¥ (-)""""X;"iefrV

i=1 i=0

n-1 i ) )
= T (- g e
i=0 j=0
n—1
= Y (-1D)"'X7 "' mod(e,,...,e,_,)
i=0
n-—1
= (=D X Xt = (=)
i=0
and, similarly,
n—2 n—2 ) .
5n—1= H(Xi _Xn~1) = ("1)n_2_1X::1241e§"_2)
i=1 i=0
n—2 i J o
= X L L (-)"T XX e
i=0 j=0k=0
n—-2 | o
= Z(—l)"_zX,:’jlz_/X,’, mod(e,...,e,_,)
i=0 j=0

n—2
(-D"* T (n=-1-i)Xr27'x]

i=0
=(-1)""*n - 1)X2-} + X, X other terms

€ ((n—-1)X; 7, X, )mod(e,,...,e,_;).

Thus,

A=A, =884, € (nX; )(n—1)X}22, X,)mod(e,,...,e,_,)

n—1>

n—-1»

= (n(n - DX 'X7"2, nX])mod(e,,...,e,_,).

So A ele,...,e,_DklX,,..., X, ]if n = 0mod p.

If » =1mod p, then the element A is in (e,,...,e)k[X,,..., X,]
because X € (e,,...,e)k[X,..., X,]. (X, is a root of the polynomial
IT7. (Z - X)), whose coefficients are te,,..., te,.)

We can now decide the F-rationality of k[X|,..., X,]** for certain
values of n and char(k).
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12.2. THEOREM. Let k be a field of characteristic p > 3. Let the alternat-
ing group A, act on klX,,...,X,] by permuting the Uariables That is,
consider the k—algebra action ofA determmed by o(X) =X, foro € A,.

Then k[ X,,..., X,]1" is an N-graded Gorenstein F-pure normal domam
with negative a-im'ariant for all n, but is not F-rational ifn > 3 andn = 0 or
1 mod p.

Proof. This follows from Proposition 9.1, Section 10 (specifically the
reduction in Section 10 to Question 10.1), and Lemma 12.1, which answers
Question 10.1 in the described characteristics.

We can immediately conclude from Theorem 12.2 and the graded
F-rationality criterion in 2.5 that [ X,,..., X,}*» cannot have an isolated
non-F-rational point at its homogeneous maximal ideal. The next theorem
draws the yet stronger conclusion that k[ X,,..., X,]“ cannot fail to be
F-rational only at (finitely many) maximal ideals.

12.3. THEOREM. Let k be a field of characteristic p > 3. Let the alternat-
ing group A, act on the polynomial ring R = k[ X, ..., X, ] by permuting the
variables. (See Theorem 12.2 for the explicit description of this action.) Then
the locus in Spec R*~ where R"" is not F-rational has positive dimension.

Proof. Let I be the radical ideal defining the non-F-rational locus
V(I). (See Proposition 2.5.) Suppose dim V(I) = 0. Then / is the intersec-
tion of a finite number of maximal ideals. But I is homogeneous (by 2.5),
so any minimal prime of / is homogeneous. Thus / must be the homoge-
neous maximal ideal, contradicting the observation preceding this theorem
that k[ X,,..., X,]¥* cannot have an isolated non-F-rational point.

Remark. While Theorem 12.3 tells us there is some nonmaximal prime
P for which k[X|,..., X,]3" is not F-rational, we can give more specific
information in the case n = Omod p. From Lemma 12.1, we know A is in
(e),...,e,_klX,,..., X,], instead of just in (e,,...,e k[ X),..., X,].
But A & (ey,...,e,_ 1)k[Xl,.. X, 1" because ey,...,e, is a regular se-
quence in k[ X|,..., X,]*". From this and 2.6 we can conclude that R is
not F-rational: To be F rational, R" would need to be a direct summand
of R,, but the ideal (e,,..., €n- I)RA" is not contracted. Thus, there is a
homogeneous nonmaximal prime P not containing e, such that Rf- is not
F-rational. (Specifically, we can take P to be any mlmmal prime of I not
containing e,, where I defines the non-F-rational locus.)

Our results on F-rationality in k[X|,..., X,]?" lead to a number of
questions.

Questions. 1. Do the singular and non-F-rational loci of
k[ X,,..., X 1" coincide when this ring is not F-rational (i.e., in character-
istics in which this ring is not F-rational)?
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The answer to this question would obviously be “No” if one omitted the
restriction that k[ X,,..., X,]*» not be F-rational, for this ring is never
regular, but there do exist characteristics (e.g., those relatively prime to
n!/2) in which it is F-rational.

But the question as stated makes sense: Fix a value of char(k) for which

the ring k[ X,,..., X,,]*" is not F-rational. (Theorem 12.2 provides some
such characteristics, e.g., char(k) dividing n.) Now ask: Does this ring
kK X,,..., X, )" only fail to be regular at primes where it fails to be

F-rational?

There is some evidence for an affirmative answer: In the case n = p = 3,
both loci are defined by the ideal (e, e,, A).

We remark that, while there is no algorithm to compute the non-F-ra-
tional locus, the singular locus can be found in a straightforward manner.
Recalling that k[ X,,..., X, ]*" is the hypersurface

kle,,...,e,, Z]
GRS

we see that its singular locus is defined by A and the partial derivatives of
A? with respect to each of the algebraically independent elements e;. (We
are assuming char(k) # 2.) Thus, we simply need to express the symmetric
polynomial A’ as a polynomial in the elementary symmetric functions
ey,...,e,. There are various algorithms for doing this. One way is to
compute the resultant R(f, f') of the polynomial

AX)=X"—e, X" '+ +(=1"e,

with its derivative f'. This computation, which simply involves taking the
determinant of a matrix, produces a polynomial in e,,...,e,. But R(f, f")
is well known to be the discriminant A* = [T, (X, - X)), i.e., the product
of the differences of the roots of f.

2. Can one generalize Lemma 12.1 to other characteristics dividing
|A4,1? If so, one could also generalize Theorems 12.2 and 12.3, to show the
ring k[ X,,..., X,]"" not to be F-rational in these characteristics. (It may
even turn out that the ring k[ X,,..., X,]¥" is F-rational in precisely those
characteristics relatively prime to n!/2. But this is only speculation.)

We, obviously, see no apparent generalization, even to the case n =
2mod p and n, p > 3. But we did verify, using the program Macaulay, that
the conclusion of 12.1 continues to hold for the smallest values of n > 3
and p > 3 to which it does not apply. That is, R“s is not F-rational in
characteristic 3. (One checks that A is in (e, ..., e k[ X|,..., Xi])



RINGS OF INVARIANTS 859

13. CONCLUSIONS

In this paper, we have studied the related properties of Cohen—Macaulay
and F-rationality in certain of a large class of invariant rings, specifically
those obtained by the variable permuting action of a finite group G < §,,
on a polynomial ring k[ X,..., X, }.

Ultimately, one would like to classify the groups G and fields & for
which the invariant ring k[ X,,..., X,]¢ is Cohen—Macaulay (resp., F-ra-
tional). Some of the tools used in our analyses may be useful in this effort.
Specifically, Theorem 4.1 could be useful in studying the Cohen-Macaulay
property if one learns more about the locus where the action of G is not
free. The results we obtain in Part I might be useful in completing an
analysis of the characteristics in which k[ X,,..., X,]*» is F-rational.
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