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Abstract. We characterize strong F-regularity, a property associated with
tight closure, in a large class of rings. A special case of our results is a workable
criterion in complete intersection rings.

Tight closure is a recently introduced operation linked to a variety of results
in commutative algebra. Among the major results achieved with its use are a
generalization of the Direct Summand Conjecture for rings containing a field [HH2]
and a greatly simplified proof that invariant rings of regular rings by reductive
groups are Cohen-Macaulay [HH1]. (Other applications are found in [Ho], [HH3],
[HH4], and [S].) Hoping to discover additional results and to understand what makes
tight closure so effective, one is led to examining tight closure itself. One way to
do this is to study related concepts such as strong F-regularity.

The definition of strong F-regularity is not intuitively clear. An F-finite reduced
ring R of prime characteristic p is strongly F-regular if for every element c of R that
is not in any minimal prime of R, the R-linear map R → R1/q sending 1 7→ c1/q

has an R-linear retraction for all sufficiently large powers q of p [HH3]. (Here, R1/q

denotes the set of qth roots of the elements of R, regarded as an R-module in the
natural way.)

While its definition may seem largely technical, this concept turns out to fit
nicely with a number of ring properties. Strongly F-regular rings are between
regular rings and Cohen-Macaulay normal rings [HH3]. They are always F-pure
and have a negative a-invariant in the graded case ([HH3],[HH2]). And, of course,
they’re connected with tight closure: Every ideal in a strongly F-regular ring is
tightly closed ([HH3]).

What we contribute to an understanding of strong F-regularity is a character-
ization (Theorems 2.3 and 3.1) in a large class of rings: A homomorphic image
S/I of an F-finite regular local or F-finite regular graded ring S of characteristic p
with (homogeneous) maximal ideal m, assumed to have infinite residue field in the
graded case, by a (homogeneous) radical ideal I is strongly F-regular if and only
if s(I [pe] : I) 6⊆ m[pe] for some e ≥ 1, where s is a (homogeneous) element of S at
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which S/I is regular and not in any minimal prime of I. (See Section 1 for the
definitions of I [pe] and m[pe].)

In other words, checking whether such a ring is strongly F-regular amounts to a
familiar task (finding s at which S/I is regular) and a series of ideal containment
problems.

These criteria are a good deal simpler in the complete intersection case, and
often provide a reasonable way to test strong F-regularity in examples: See Section
4.

Independently of our work, N. Hara gave an elegant different proof for the special
case of graded complete intersection rings [Ha]. We also acknowledge R. Fedder,
whose paper [Fe] provided in large measure the inspiration for this paper. ([Fe]
contains a similar characterization of F-purity.)

Theorem 2.3 in this paper is from the author’s Ph.D. thesis. The author thanks
her advisor Melvin Hochster for guidance, and thanks the referee for helpful com-
ments.

The rings in this paper are tacitly assumed to be Noetherian of prime charac-
teristic. This characteristic is denoted p, e denotes a positive integer, q denotes pe,
and R denotes a ring (Noetherian of characteristic p).

1. Background

Essential to the definitions used in this paper and to the theory of tight closure
is the Frobenius endomorphism. This is the map F : R → R that sends x to xp.
(Recall that R denotes a ring of characteristic p.) The eth iteration of this map,
which sends x to xq (recalling q = pe), is denoted by Fe.

One Frobenius-inspired notion is the “bracket power” of an ideal. If I ⊆ R is an
ideal, I [q] denotes the ideal generated by the qth powers of the elements of I. Note
that I [q] is also generated by the qth powers of a set of generators for I.

Because Fe : R → R is a ring homomorphism, it determines a restriction of
scalars functor in the category of R-modules. We denote this functor by a pre-
superscript e. Explicitly, if M is an R-module, then eM is the R-module whose
elements and abelian group structure agree with those of M , and whose scalar
multiplication is given by

r.u := rqu

for r ∈ R, u ∈M. Also, if φ : M → N is an R-homomorphism, then eφ : eM → eN
is the R-linear map that agrees elementwise with the map φ: eφ(u) = φ(u) for
u ∈M .

The R-module eR is regarded as a ring by defining its multiplication to be that
of R. Thus, the action of r ∈ R on s ∈ eR results in the same element of eR
as does the product of rq and s in eR. To avoid confusing these two operations
(namely, the R-module action on eR and ring multiplication in eR), we use two
different notations (r.s versus rs), and often specify whether elements of R are to
be thought of in R or in eR.

The R-module eM is given an eR-module structure as well: If r ∈ eR and
u ∈ eM , we define

r.u := ru.

In other words, this is the R-module structure on M if we identify eR with R as
rings and eM with M as abelian groups.
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As an illustration of these concepts, let I be an ideal in R, and consider the
ideals eI and IeR in eR. eI is the ideal of eR consisting of the elements of I. In
contrast, IeR, being the expansion of the ideal I to the ring eR, is e(I [q]). (That
is, IeR = e(I [q]) as eR-modules.)

We next discuss two ring properties that concern the Frobenius map.

1.1. Definition. Let R denote a ring of prime characteristic.
(1) R is said to be F-finite if 1R is a finitely-generated R-module.
(2) R is F-pure if F ⊗ 1 : R ⊗RM → 1R ⊗RM is injective for every R-module

M .

It is easy to generate F-finite rings. Any localization of a finitely generated
algebra over a perfect field is F-finite [Fe]. Localizations and homomorphic images
of F-finite rings are F-finite [Fe].

F-purity is more subtle. Obviously, F-purity is a local issue, and F-pure rings
are reduced. A quotient of a polynomial ring by an ideal generated by square-free
monomials is F-pure [HR]. And, regular rings are F-pure [HR]. The proof of this last
fact in the F-finite case also follows from the next proposition, which is essentially
from [Ku1].

1.2. Proposition. Let R be an F-finite regular local ring. Then 1R is free over R.
Consequently, eR is R-free for every positive integer e.

Proof. pdR
1R = depth 1R − depthR = 0. Thus, 1R is a projective and finitely

generated module over the local ring R, so is R-free.
The remaining statement follows from induction on e. �
Proposition 1.2 has a converse: If eR is R-free for some e, then R is regular

[Ku1].
Theorem 1.3 is a very useful characterization of F-purity. With it, for instance,

the F-purity of a local hypersurface S/(f) is decided by an ideal membership prob-
lem (specifically, in the notation of 1.3, whether fp−1 is in m[p]).

1.3. Theorem. Let S be a regular local ring with maximal ideal m, and let R =
S/I. Then R is F-pure if and only if I [p] : I 6⊆ m[p].

Proof. This is the main result (Theorem 1.12) in [Fe]. �
We shall also need the following results (1.4 and 1.5) from [Fe]. Recall that if

S is a ring and S∗ is an S-algebra, then HomS(S∗, S) has an S∗-module structure
given by (s.φ)(t) := φ(st), where s, t ∈ S∗ and φ ∈ HomS(S∗, S).

1.4. Proposition. Let S ⊆ S∗ be Gorenstein local rings such that S∗ is a finitely
generated free S-module. Then HomS(S∗, S) ∼= S∗ as an S∗-module.

Furthermore, if T is a generator for HomS(S∗, S) as an S∗-module, I, an ideal
of S, and s an element in S∗, then the image of an ideal H under sT : S∗ → S is
contained in I if and only if s ∈ (IS∗ : H).

Proof. [Fe] Lemma 1.6. Note that sT refers to the S∗-action on HomS(S∗, S). �
Proposition 1.4 tells us that the elements of S∗ ∼= HomS(S∗, S) that induce

well-defined homomorphisms S∗/H → S/I are those in the ideal (IS∗ : H). Fur-
thermore, the ones among these that define the zero map S∗/H → S/I are those
in IS∗. This explains the injectivity of ψ in the following corollary.
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1.5. Corollary. Under the hypotheses and notation of Proposition 1.4, there is an
S-module isomorphism

ψ :
(IS∗ : H)

IS∗
→ HomS

(
S∗

H
,
S

I

)
given by

ψ(x+ IS∗) := xT ,

where xT is defined by

xT (y +H) := (xT )(y) + I.

(In other words, xT (y +H) = T (xy) + I.)

Proof. [Fe], Corollary to Lemma 1.6. �
Next, we cite pertinent facts concerning strong F-regularity. The following defi-

nition is equivalent to that given in the introduction.

1.6. Definition. Let R be an F-finite reduced ring (of characteristic p). We say
that R is strongly F-regular if for every element c of R that is not in any minimal
prime of R, the R-linear map R→ eR defined by 1 7→ c has an R-linear retraction
for all sufficiently large e (equivalently for some e) [HH3].

Notation. We denote the R-linear map R → eR sending 1 to c (i.e. the map
r 7→ rp

e

c) in the definition by cFe. Thus, cFe is the composition

R
Fe−→ eR

c−→ eR,

where the second map is multiplication by c thought of as an element of eR.
Definition 1.6 is equivalent to the definition of strong F-regularity given in the

introduction: The R-linear maps cFe : R → eR and f : R → R1/q via f(1) = c1/q

are isomorphic. Consequently, the map cFe : R→ eR splits if and only if f : R→
R1/q does.

The next proposition makes the definition of strong F-regularity significantly
more feasible to apply. It says that one only has to verify the splitting for some e
of cFe for one particular c.

1.7. Proposition. Let R be an F-finite reduced ring.
(1) Let c be an element of R not in any minimal prime of R. Suppose there exists

e′ ≥ 1 such that cFe
′

: R→ e′R has an R-linear retraction. Then cFe has an
R-linear retraction for all e ≥ e′.

(2) Let s be an element of R not in any minimal prime of R such that Rs is
regular (or even just strongly F-regular: such elements exist by 1.8). Then R
is strongly F-regular if and only if there exists e ≥ 1 for which sFe : R→ eR
has an R-linear retraction.

Proof. See Remark 5.4(d) and Theorem 5.9 in [HH3]. �
1.8. Remark. Elements s as in Proposition 1.7 do exist: See Remark 5.7 of [HH3].
In the case in which R is graded (i.e. N-graded and finitely generated over a field
k such that k = [R]0), s may be taken to be homogeneous, since the radical ideal
defining R’s singular locus will be homogenous.

The following theorem relates strong F-regularity to a number of standard prop-
erties.
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1.9. Theorem. Let R be an F-finite reduced ring.
(1) If R is regular, then R is strongly F-regular.
(2) If R is strongly F-regular, then R is normal, Cohen-Macaulay, and F-pure.
(3) If R is strongly F-regular, then every ideal of R is tightly closed.

Proof. See Theorem 5.5 of [HH3], Theorems 2.1 and 3.1 of [HH4], Remark 1.6 of
[FW], Proposition 3.8 of [HH2], and Theorem 2.5 of [Ku2]. �

2. A criterion for strong F-regularity

In this section we prove a criterion (Theorem 2.3) for strong F-regularity in
images of F-finite regular local rings. Section 3 contains a graded version of this
result, and Section 4 contains further discussion for complete intersection rings.

The strong F-regularity of a ring R is a question of whether certain R-linear
maps R → eR have R-linear retractions. Thus, in studying strong F-regularity,
one is led to analyzing the modules HomR(eR,R). We do such an analysis in 2.1,
leading to our main results in 2.3 and 3.1.

Our arguments in this section largely parallel ones in [Fe], in which a character-
ization of F-purity is found by a similar analysis of HomR(1R,R).

2.1. Lemma. Let S be an F-finite regular local ring, and let R denote S/I for
some ideal I. Then

HomR(eR,R) ∼= e

(
(I [q] : I)

I [q]

)
as R-modules.

Proof. From Proposition 1.2 we know that eS is a free S-module. Thus we can
apply 1.5 with S∗ := eS, H := eI, and I := I to obtain

HomS(eR,R) ∼=
eI [q] :eS

eI
eI [q]

∼= e

(
I [q] :S I

I [q]

)
as S-modules. (eR ∼= eS/eI because restriction of scalars is exact.) The result now
follows because R-linearity coincides with S-linearity for maps eR→ R. �

2.2. Lemma. Let S be an F-finite regular local ring with maximal ideal m. Let
π : S → R be a ring surjection onto a ring R. Let I be the kernel of π. Fix e ≥ 1
and c ∈ S. The map π(c)Fe : R → eR has an R-linear retraction if and only if
c 6∈ (m[q] :S (I [q] :S I)).

Proof. First some notation. If φ : eS → S is S-linear and maps eI to I, we will
denote by π(φ) the corresponding R-linear map from eR to R (i.e. the one that
sends y + eI to π(φ(y))). (Recall that eR ∼= eS/eI as R-modules.)

Let T be a generator of the eS-module HomS(eS, S) ∼= eS. (See Proposition
1.4.) By Corollary 1.5, the elements of HomR(eR,R) are of the form π(sT ) with
s ∈ e(I [q] : I). Thus, a retraction for π(c)Fe would be a map π(sT ) with s ∈ e(I [q] :
I) for which π(sT )π(c)Fe is the identity map on R, i.e. fixes the identity element
1R of R. But π(sT )π(c)Fe(1R) = π(T (sc)). So π(c)Fe splits (has an R-linear
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retraction) precisely when the ideal π(T (c(I [q] : I))) is not proper. In other words,
π(c)Fe splits if and only if

π(T (c(I [q] : I))) 6⊆ π(m),

i.e. when

T (c(I [q] : I)) 6⊆ m+ I = m.

Since T (c(I [q] : I)) = (cT )(I [q] : I), we can utilize 1.4 again to characterize the
c ∈ S for which T (c(I [q] : I)) ⊆ m as the c in (m[q] : (I [q] : I)), giving the result. �

Following is the main result of this section.

2.3. Theorem. Let S be an F-finite regular local ring of prime characteristic p
with maximal ideal m. Let R denote S/I for some proper radical ideal I. Let s be
an element of S not in any minimal prime of I such that Rs is regular (or even
just strongly F-regular: such elements exist by 1.8.) The following are equivalent.

(1) R is strongly F-regular.
(2) For each element c of S not in any minimal prime of I, c(I [pe] : I) 6⊆ m[pe]

for all sufficiently large positive integers e.
(3) I is prime and I =

⋂
e≥1(m[pe] : (I [pe] : I)).

(4) There exists a positive integer e such that s(I [pe] : I) 6⊆ m[pe].

Proof. (1)≡(2): This follows directly from Lemma 2.2 and the definition of strong
F-regularity.

(2)=⇒(3): Assume R is strongly F-regular. Then I is prime because R is normal
(see 1.9) and local. Then I ⊇

⋂
e(m

[pe] : (I [pe] : I)) follows from (2), and ⊆ holds
in general.

(3)=⇒(4): Obvious.
(4)=⇒(1): 1.7 and 2.2. �

Note the similarity between Theorems 2.3 and 1.3, Fedder’s F-purity criterion
(1.3): Each expresses a Frobenius-related property of S/I to a property of bracket
powers of I and m.

3. A graded version

This section contains a criterion (Theorem 3.1) for strong F-regularity in images
of F-finite regular graded rings over infinite fields. By “graded”, we mean N-graded
and finitely generated over a field k such that k consists of the elements of degree
zero. Note that the F-finite regular graded rings are simply the polynomial rings
k[X1, . . . , Xn] over F-finite fields k.

3.1. Theorem. Let R be a reduced N-graded ring of prime characteristic p such
that [R]0 is an infinite F-finite field and R is a finitely generated [R]0-algebra. Write

R ∼=
k[X1, . . . , Xn]

I

where k = [R]0, k[X1, . . . , Xn] is an N-graded polynomial ring over k, such that
k = [k[X1, . . . , Xn]]0 and X1, . . . , Xn are homogeneous, and I is homogeneous.



STRONG F-REGULARITY 351

Let s be a homogenous element of k[X1, . . . , Xn] not in any minimal prime of I
for which Rs is regular or even just strongly F-regular. (Such s exist by 1.8.) Let
m be (X1, . . . , Xn). The following are equivalent.

(1) R is strongly F-regular.
(2) I is prime and I =

⋂
e≥1(m[pe] : (I [pe] : I)).

(3) There exists a positive integer e such that s(I [pe] : I) 6⊆ m[pe].

Proof. (1)=⇒(2): Assume R is strongly F-regular. Then R, being a graded normal
(1.9) ring, is a domain, and so I is prime.

Let q denote pe. Strong F-regularity localizes ([HH3]), so we can apply 2.3 to
the local ring Rm to see that

Im =
⋂
q

(m[q]
m : (I [q]

m : Im)).

Set S := k[X1, . . . , Xn] and Jq := m[q] : (I [q] : I). Note that each Jq is homoge-

neous and that JqSm = m[q]Sm : (I [q]Sm : ISm) because the colons commute with
flat base change.

Thus, Im =
⋂

(Jq)m. Contracting each side back to S (i.e. applying
⋂
S) gives

that I =
⋂
q(m

[q] : (I [q] : I)). (The ideals I and Jq are contracted with respect to

S ⊆ Sm because these ideals are homogeneous.)

(2)=⇒(3): Obvious.

(3)=⇒(1): For such an e, we will have s(I
[pe]
m : Im) 6⊆ m[pe]

m (by the homogeneity
of I [pe] : I,m[pe], and s). Applying 2.2 and 1.7, we then see that Rm is strongly
F-regular.

But the radical ideal defining the complement of the strongly F-regular locus
of R is homogeneous when k is infinite. (The strongly F-regular locus is open
by [HH3], Theorem 5.9. One sees from this by applying standard techniques, i.e.
the techniques of Discussion 4.1 and Theorem 4.2 in [HH2], that the radical ideal
defining the complement of this locus is homogenous when k is infinite.) So Rm
being strongly F-regular implies that R is strongly F-regular. �

4. Special case: Complete intersections

The main result (Theorem 4.1) of this section is a workable criterion of strong
F-regularity in complete intersection rings. The essence of case (2) of Theorem 4.1
was proven independently by N. Hara and appears in [Ha].

4.1. Theorem. Let S,m,G1, . . . , Gd be as in one of the following two scenarios.
(1) S is an F-finite regular local ring of prime characteristic p, m is its maximal

ideal, and G1, . . . , Gd is a proper regular sequence generating a radical ideal.
(2) S = k[X1, . . . , Xn] is an N-graded polynomial ring over an infinite F-finite

field k of prime characteristic p such that k = [S]0 and X1, . . . , Xn are homo-
geneous, m is (X1, . . . , Xn), and G1, . . . , Gd is a proper homogeneous regular
sequence generating a radical ideal.

Let R be S/(G1, . . . , Gd). Let s be an element of S not in any minimal prime
of (G1, . . . , Gd) for which Rs is regular (or strongly F-regular), choosing s to be
homogeneous if R is graded. (Such elements s exist by Remark 1.8.)
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R is strongly F-regular if and only if there exists a positive integer e such that

s(
∏d
i=1Gi)

pe−1 6∈ m[pe].

Proof. This is an immediate corollary of Theorems 2.3 and 3.1, noting that if I =

(G1, . . . , Gd), then I [pe] : I = (Gp
e

1 , . . . , G
pe

d ,
∏d
i=1 G

pe−1
i ). �

Example. The ring

R =
k[X,Y, Z](X,Y,Z)

(X2 + Y 2 + Z2 +XY Z)
,

where k is an F-finite field of characteristic not equal to two, is strongly F-regular.

Proof. One sees that for s := 2Y +XZ, g := X2+Y 2+Z2+XY Z, and p := char(k)
that sgp−1 6∈ (Xp, Y p, Zp)(X,Y,Z). (One way is to notice that sgp−1 has a monomial
term µ 6∈ (Xp, Y p, Zp) with the degree of µ being minimal among the degrees of
the monomials in sgp−1.) �

We thank the referee for pointing out the following corollary, reminiscent of the
well-known fact that if S is a regular local ring with maximal ideal m and f ∈ m2,
then S/(f) is not regular.

4.2. Corollary. Let S,m,G1, . . . , Gd, and R be as in 4.1, and let n := dimS. If

(G1, . . . , Gd) 6= m and
∏d
i=1 Gi ∈ mn, then R is not strongly F-regular.

Proof. Because (G1, . . . , Gd) 6= m, there exists an element s, homogeneous in the
graded case, of m and not in any minimal prime of (G1, . . . , Gd) for which Rs is

regular. Let e be a positive integer. Then s
∏d
i=1G

pe−1
i ∈ mn(pe−1)+1 ⊆ m[pe], the

latter inclusion being because m can be generated by n elements. �
For example, k[X,Y, Z](X,Y,Z)/(X

3+Y 3+Z3+X2Y Z) is not strongly F-regular.

5. A question

To have a really useful strong F-regularity criterion, one would like an affirmative
answer to the following.

Question. Given R and s as in Theorem 2.3 or 3.1, can we effectively determine
an integer E = E(s,R) such that

R is strongly F-regular ⇐⇒ s(I [pE ] : I) 6⊆ m[pE ]?

In the case of complete intersection rings R, an affirmative answer would reduce
testing strong F-regularity to determining s and E and deciding a single ideal
membership problem.
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J. Amer. Math. Soc. 3 (1990), 31–116. MR 91g:13010

[HH2] , Tight closures of parameter ideals and splitting in module-finite extensions, preprint.
[HH3] , F-regularity, test elements, and smooth base change, preprint.
[HH4] , Tight closure and strong F-regularity, Soc. Math. France, Paris, 1989, pp. 119–133.

MR 91i:13025
[HR] M. Hochster and J. L. Roberts, The purity of the Frobenius and local cohomology, Adv.

Math. 21 (1976), 117–172. MR 54:5230

[Ku1] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91
(1969), 772–784. MR 40:5609

[Ku2] , On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999–1013.
MR 55:5612

[S] K. E. Smith, F-rational rings have rational singularities, preprint.
[Wa] K. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991),

341–350. MR 92g:13003

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Current address: Department of Mathematics, Reed College, Portland, Oregon 97202


