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1. INTRODUCTION

Let X c P(V) be an irreducible projective algebraic variety, where V" is
a vector space of dimension N over an infinite field K. Most linear
subspaces P(W) c P(V') of codimension dim X + 1 are disjoint from X.
Such linear subspaces, whose defining equations are called systems of
parameters for the coordinate ring of X, are important from both the
computational and theoretical points of view; see [5, 11, 13] and their
references. For instance, they can be used to compute cohomology of the
coherent sheaves O,(n) on X.

From a computational point of view, it is most convenient and efficient
to work with a description of P(WW) in terms of sparse data. For example,
fixing homogeneous coordinates X; for P(}'), P(W) can be described as
the common vanishing set of a collection of linear functionals Y; =
Ejil)\inj on V. These data are sparse if many of the coefficients A,; are
zero. The minimal number of nonzero A;; that are required as we range
over all linear systems of parameters {Y;} for X is the Noether complexity—a
measure of how complex X is with respect to the chosen coordinates.
Introduced by Eisenbud and Sturmfels [5], the Noether complexity is most
interesting from the point of view of computational algebraic geometry,
combinatorics, or coding theory, where data are usually presented in terms
of a fixed and immutable choice of coordinates, However, even from a
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theoretical point of view, this number is interesting for varieties that come
equipped with a natural set of coordinates; see, for example, [10].

This paper investigates sparse systems of parameters for determinantal
varieties. Determinantal varieties have a preferred choice of coordinates;
their rich combinatorial structure and important role throughout mathe-
matics makes them an especially interesting example. We describe systems
of parameters for determinantal rings that are both highly symmetric and
which are sparse. We give formulas for the complexity of certain determi-
nantal varieties for several variants of the notion of Noether complexity.

An auxiliary investigation for monomial rings was necessary in this
study. We describe a nice combinatorial criterion for systems of parame-
ters for monomial rings in Section 3. As pointed out by Eisenbud and
Sturmfels, the Noether complexity of a projective variety is bounded above
by the Noether complexity of the initial ideal (with respect to any term
order) of its defining ideal. Our work indicates that determinantal varieties
are “maximally complex” in the sense that the Noether complexity is
actually equal to the upper bound provided by the complexity of the initial
ideal, though we are able to prove this only for certain cases.

In the course of our investigation we discovered a variety Z such that
every linear space disjoint from Z has maximal complexity with respect to
any of the four variants of complexity introduced in [5]. That is, all linear
spaces of maximal dimension disjoint from Z have the same complexity,
and this is equal to the maximal possible complexity of an arbitrary linear
space of that dimension. This is so regardless of the variant of complexity
we use; see Section 4.

A final, more theoretical, reason to study the Noether complexity of
projective varieties in general is to gain information about the Chow form.
The linear spaces of codimension d = dim X + 1 which intersect X C
P(V) nontrivially form a hypersurface in the Grassmannian Gr(}’) of
codimension d subspaces of V. This hypersurface constitutes the point
corresponding to X on the Chow variety of d — 1-dimensional subvari-
eties in P(7V). The Chow form is the equation, in Pliicker coordinates, of
this hypersurface. Eisenbud and Sturmfels pointed out that the Noether
complexity can be “read off” the Chow form [5, 2.7]. In Section 3, we
record the Chow form for monomial varieties. In practice, however, Chow
forms are notoriously difficult to compute, and there is no formula known
for the Chow form of determinantal varieties. For the case of maximal
minors, however, the Chow form can be expressed as an m X n X (n —
m — 1) “hyperdeterminant”; see [7, 4.13]. Our study of systems of parame-
ters for determinantal varieties is partially motivated by this connection
with the Chow form.
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2. SPARSE DATA AND COMPLEXITY

Let W be a codimension d linear subspace of a vector space V. We
explain what we mean by “describing W by sparse data.”

Sparsity notions are not associated to the abstract vector space V, but
rather to 7 together with a fixed choice of basis, {¢;} = e;,...,e,. Our
point of view will be that this basis for 1V is fixed and immutable. The
elements of the dual basis {X;} ¢ V* will be called the ‘“‘coordinate
functionals” or ‘“coordinates” for 1

0, fori#j,
Xie) =11, fori=j.

A codimension d linear subspace W C V can be represented in (at least)
four different ways in terms of this fixed basis for V. A basis representation
for W is a choice of basis for W, written out as a set of N — d linear
combinations of the elements e;. A cobasis representation for W is a choice
of d linear functionals on W whose common kernel is exactly W, written
out as a set of d linear combinations of the coordinate functionals x,. A
Pliicker basis representation is a choice of a basis for A ¥~ ¢W in A N*dV,
written as a combination of the preferred basis elements e, A e; AR
e;. - The Plucker cobasis representatlon of W is defined duaIIy, in terms
of the basis Xi NX N AKX

Note that Whlle there is conS|derabIe choice in choosing basis and
cobasis representations for W, both its Pliucker basis and Plticker cobasis
representations are determined by {e;} up to scalar multiple.

2.1

We will lose no generality by making this even more explicit with the
following identifications. We identify 1V with the space spanned by the
column vectors e; consisting of zeros in each row except the ith row, where
the entry is 1. The codimension d subspace W is represented by the maps

A B
WsV->V/W.

That is, W is the column space of the N X (N — d) matrix A; it is also the
kernel of the d X N matrix B. The rows of B can be thought of as linear
functionals X;b;,x; on V. The choice of A4 and B are the choice of a basis
and cobasis representation for W. The matrix A (respectively, B) can be

altered by invertible column (respectively, row) operations to produce a
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new basis (respectively, cobasis) representation for W. The N — d minors
of A are a Plucker basis representation of W, while the d minors of B are
a Plucker cobasis representation of W.

2.1. DerINITION. The complexity of a matrix M with entries in K is
the number of nonzero entries of M. The basis complexity with respect to
the basis {e,} for " is the complexity of the least complex basis representa-
tion of W. The cobasis complexity of W with respect to the basis {e;} for 7
is the complexity of the least complex cobasis representation of .

That is, the basis complexity is the complexity of the least complex
matrix A such that W is the column space of A. The cobasis complexity is
the complexity of the least complex matrix B such that W is the kernel of
B. The Plicker basis complexity is the number of nonzero N — d minors
of any basis representing matrix A. The Pliicker cobasis complexity is the
number of nonzero d minors of any cobasis representing matrix B.

We record some easy general bounds on complexity for future refer-
ence.

2.2. PROPOSITION. Let W be a codimension d subspace of an N-dimen-
sional vector space V. Then, with respect to any basis for V', there are the
following bounds on the complexity of W

(1) The basis complexity of W is between N — d and (d + 1)(N — d),
inclusive.

(2) The cobasis complexity of W is between d and (dXN —d + 1),
inclusive.

(3) The Pliicker basis and cobasis complexity are both between 1 and
(10\,’ ), inclusive.

Proof. The space W can be identified with the column space of an
N X (N — d) matrix. All such matrices differ by column operations, that is,
by the action of GL(N — d) on the right. Because the matrix is full rank,
we may multiply by some element in GL(N — d) so as to create an
N —d X N — d identity matrix inside some such matrix representing W.
The bounds in (1) follow immediately.

The bounds in (2) follow similarly, since a cobasis representation of W is
a full rank d X N matrix, up to the action of GL(d) on the left. The
bounds in item (3) follow by computing the maximal minors in each of
these extreme cases. I

We now turn our attention to the specific instance arising in computa-
tional algebraic geometry: the linear subspaces disjoint from a projective
variety.
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Let X c P(V) be a projective variety of dimension d — 1. Let WcV
be a subvector space of codimension d such that P(W) N X is empty (a
sufficiently general choice of W will have this property). Let R = K[ X] be
the homogeneous coordinate ring for X; it is a graded ring, with fixed
presentation

R K[Xl,XZI,...,XN],

where I is the homogeneous ideal of relations on the coordinate function-
als X,. If K is an infinite field, then R has a system of parameters
consisting of homogeneous elements of degree 1. These are d (= dimension
R) elements Y,,Y,,...,Y, of the form

Y, = A Xy + A X, + o A Xy

that generate an ideal of R whose radical is (X3, ..., X). Equivalently, a
(linear) system of parameters {Y:} is a collection of d linear forms such
that the corresponding hyperplanes of zeros intersect the affine cone over
X only at the origin of V/; that is, a system of parameters is precisely the
same as a cobasis for a linear space of P(JV) of maximal dimension of
disjoint from X.

2.2. Parameter Matrices

The system of parameters will be represented by a d X N matrix, whose
ith row is the N vector

()\i17)\i2""'/\iN)7

giving the defining equation for Y;. We call such a matrix a parameter
matrix; it is simply the matrix B as in Section 2.1. Of course, not every
d X N matrix defines a system of parameters for R—the parameter
matrices are identified with a Zariski open subspace of affine dN space;
see Section 3.2.

The Noether complexity of X or, equivalently, of R, with respect to the
fixed coordinates X; is defined as follows [5].

2.3. DerINITION. The Noether (cobasis) complexity of X c P(}/) with
respect to fixed coordinates X; on V' is the minimal possible cobasis
complexity for a codimension d linear subvariety P(W) < P(}) intersect-
ing X trivially. Equivalently, it is the complexity of a sparsest possible

parameter matrix for R.

Similarly, we define the Noether basis complexity and the Plucker basis
and cobasis complexity. The Noether cobasis complexity is of primary
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interest in standard computations (see [5, 11]). We write NC(J) for the
Noether cobasis complexity and refer to this as simply the “Noether
complexity” without further qualification.

We stress that the definition of Noether complexity requires one to fix
the coordinates X,, X,,..., Xy, and then consider systems of parameters
expressed in terms of these coordinates. Of course, one could always
perform a linear change of coordinates so as to assume that X7, X3,..., X}
are a system of parameters for R = (K[ X7, X},..., Xy D/I; that is, there
always exist coordinates such that the Noether complexity of I is d. The point
here is to work with a chosen set of coordinates.

Proposition 2.2 translates into some obvious bounds on Noether com-
plexity.

2.4. GENERAL BOuUND ON NOETHER COMPLEXITY. Let I be any homoge-
neous ideal of K[ X, X,, ..., Xy ] The Noether basis complexity is no greater
than (N — d)Xd + 1) and no less than N — d. The Noether cobasis complex-
ity of I is no greater than Nd — d(d — 1) and no less than d. The Noether

Pliicker basis and cobasis complexities are between 1 and ({j ), inclusive.

A parameter matrix for R remains a parameter matrix after multiplica-
tion on the left by any element of GL(d, K); the ideal of R generated by
the corresponding linear functions is unchanged. This leads to the follow-
ing relationship between the Noether basis and cobasis complexities.
Essentially, we relate these complexities when some minimally complex
parameter matrix can be “solved” without increasing its complexity.

2.5. PrRoPOSITION.  Let R = k[ X,,..., Xy1/I be a graded ring of dimen-
sion d and C = (\;;) be a parameter matrix for R of minimal complexity.
Suppose that for some A € GL(d, k), AC contains a d X d submatrix that is
a permutation matrix and AC has no larger complexity than C. Then the
Noether cobasis complexity of R is at least b — N + 2d, where b denotes the
Noether basis complexity of R.

Proof. Permuting rows and columns if necessary, we assume that the
leftmost d X d minor of AC is the identity matrix. Write AC = (};;) and
let cx(A) denote complexity of the matrix A. Associated to AC is a basis
Uy, ..., Uy_, Tor its null space of complexity N — 2d + cx(AC), obtained
by “back substitution” as follows. For each j = 1,..., N —d, let v; be the
column vector that has a 1 in its (j + d)th entry, 0 in all other entries with
indices > d, and whose first through dth entries are —A; ;. ;... =Xy 440
respectively. All together this gives a basis of complexity (N — d) +
(ex(AC) —d) = N — 2d + cx(AC). Thus, N — 2d + cx(AC) = b, so
ax(C) = cax(AC)=b—N+2d. 1
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Example 7.13 shows that the inequality of Proposition 2.5 does not hold
for general R.

An interesting question is for what, if any, varieties X c P(V/) are the
general upper bounds on complexity in 2.4 realized? In Section 4 we give
an example of a single variety (in each codimension and embedding
dimension) for which all the complexity achieves these upper limits.

3. SYSTEMS OF PARAMETERS FOR EQUIDIMENSIONAL
MONOMIAL RINGS

Consider a polynomial ring K[ X, ..., X] over a field K, and let I be
any ideal generated by monomials X;:X52 --- Xz in the variables X;. The
guotient ring

is called a monomial ring. The purpose of this section is to combinatorially
characterize all linear systems of parameters for equidimensional mono-
mial rings.

3.1. LEMMA. Let R be any graded (or local) Noetherian ring of dimen-
sion d and let Yy, ..., Y, be a collection of d elements in R. The following are
equivalent.

(1) The elements Yy, ..., Y, are a system of parameters for R.

(2) The images of the elementsy,, ..., y, are a system of parameters for
the ring R,.q = R/N obtained as the quotient by the ideal N of nilpotent
elements in R.

(3) The images of the Y, generate a nilpotent ideal modulo each
minimal prime of R.

If, in addition, dim R /P = d for all minimal primes P of R, then the above
are equivalent to:

(4)  The images of the elements Y, ..., Y, are a system of parameters for
every domain R /P, where P ranges through the minimal primes P of R.

The proof is an easy exercise.

Geometrically, the lemma implies that the Noether complexity of a
scheme in projective space is the same as the Noether complexity of the
associated reduced subscheme, the variety obtained as the union of its
irreducible components.
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This has a particularly nice application to monomial rings. If I is a
monomial ideal, then it has a primary decomposition

I= () (X8, Xy,
i=1

where we omit the generator X/ when a;; = 0. (There are algorithms for
computing such a primary decomposition [3, 9, 15].) In particular, the
minimal primes of a monomial ideal are generated by subsets of the
variables. This leads to the following proposition.

3.2. PROPOSITION.  Let I C k[ Xy, ..., Xy] be an equidimensional mono-
mial ideal and let P, = (X, ,..., X; ) fori=1,...,rbe an enumeration of
the minimal primes of I. Then a collection of linear forms {Y, = £)_, A, X}
defines a system of parameters for the monomial ring k[ X, ..., Xy1/I if and
only if the matrix

/\11 /\12 /\lN
A = AZl )\22 /\2 N
/\dl )\d2 AdN

satisfies the following rank condition: each of the r d X d subdeterminants
formed by deleting the columns {i, ... ,iy_,) indexed by the minimal primes
of I is nonzero.

Proof. By Lemma 3.1, the set {Y}} is a system of parameters for R if
and only if its image modulo each P; is a system of parameters for

R/P,=K[X,,....Xy1/(X,.... X,, )

IN-a

=K[X,... X, . .X,

53

The latter ring is a polynomial ring in the d variables that are not
generators for P,.

It is easy to check that a set of d linear forms in a polynomial ring in d
variables form a system of parameters for R if and only if they are linearly
independent. Indeed, Y, is dependent on the other Y,, where Y, denotes
reduction modulo (X, ,,..., Xy), if and only if the ideal generated by

(Y,,...,Y,) is the same as the ideal generated by (Y,,...,Y,_,). This holds
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if and only if K[X,,..., X,1/(Y,,....Y) =K[X,,..., X,1/(Y,,....Y, )
is not zero dimensional, that is, if and only if Y;,...,Y, is not a system of
parameters for R.

This condition translates directly into the rank condition of Proposi-
tion 3.2. |

3.1

Proposition 3.2 allows one to easily check whether any set of linear
forms is a system of parameters for a given equidimensional monomial
ring, at least in theory. This does not mean that we have an explicit
formula for Noether complexity, though it is clearly possible to describe, in
terms of combinatorial data, how much overlapping occurs between the
minimal primes.

We also note from Proposition 3.2 that the Pliicker cobasis complexity
for an equidimensional monomial ring is at least as large as the number of
its minimal primes. This inequality relationship might be strict. For in-
stance the Plucker complexity of the union of the coordinate spaces
spanned by X, X, and X;, X, is larger than 2.

3.2. The Chow Form

For any equidimensional projective variety X c P(JV) of dimension
d + 1, the codimension d planes in P(}) that intersect X form a hyper-
surface in the Grassmannian Gr¢(}) of all codimension d planes in P(}).

We denote the Pliicker (cobasis) coordinates for Gre(V) by [j,j, = j, 1.
This means that given a codimension d plane W, presented as the kernel
of a d X N cobasis matrix A, the symbol [j,j, - j,] denotes the determi-
nant of the d X d matrix formed by the columns j, <j, < -+ <j,. The
Pliicker coordinates of a point in Gr(}/) are well defined up to constant
nonzero multiple.

The hypersurface in Gr¢(}) of planes intersecting X nontrivially is the
vanishing set of a single polynomial Fy in Plicker coordinates: Fy is a
Chow form of X. Technically speaking, this makes sense as stated only up
to the radical, but for reduced X, the Chow form has no repeated factors.
The degree of polynomial Fy is the degree of the variety X in P(}/). The
form F, € P(Sym’(A “V*)) is the point corresponding to X on the Chow
variety parametrizing all degree r and dimension d — 1 subvarieties of
P(1). See [8] or [2] for more on Chow forms and Chow varieties. For the
definition of Chow polytopes and their relation to Chow forms, see [10].

Despite—or because of—their importance, Chow forms are quite com-
plicated and difficult to compute. Though the Chow form can be computed
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singly in exponential time [1], this is unfeasible for most interesting
varieties. From a theoretical point of view, we prefer to have some general
results for nice families of varieties, such as determinantal varieties. This
has been accomplished for determinantal varieties of maximal minors and
of 2-minors.

3.3

The Noether complexity can be read off the Chow form, at least in
theory. The Noether complexity of X c P(J) is the least number of
variables c;; appearing in any initial monomial of Fy as we range over all
term orders in K[c;][5, 2.7]. Here the c;; are the indeterminate coeffi-
cients of the codim(X) x dim}V’ matrix whose maximal minors are the
Plicker coordinates.

Using Proposition 3.2, the Chow form of the varieties under considera-
tion in this section is easy to write down.

3.3. COROLLARY. Let Z =V(I) =c PN~ be defined by a monomial
ideal I of pure height N — d, i.e., Z is a union of coordinate hyperplanes all of
the same dimension. Then the Chow form for Z is

[y dal,

1<j;< -+ <js<N

where the product is taken over all indices j,, ..., j,, such that the sets of
elements {X,,..., Xy} — {Xh’ . de} generate the minimal primes of I
(equivalently, define an irreducible component of Z). By definition, a codi-
mension d plane in PN~ intersects Z nontrivially if and only if it Pliicker
(cobasis) coordinates satisfy this equation.

From this expression, we confirm that equidimensional varieties that are
unions of coordinate planes have degree equal to the number of their
irreducible components.

4. A MAXIMALLY COMPLEX VARIETY

In this section, we study monomial rings closely related to the determi-
nantal varieties. These turn out to be an intersecting class of varieties
because they are maximally complex, for every sense of the Noether
complexity discussed in Section 2. We will make use of these results in the
next sections.
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4.1. Notation

Let S = K[X,, X,,..., Xyl and let I be the ideal generated by all the
degree ¢ + 1 square-free monomials in the variables X;,..., X,. Here, N
is assumed larger than ¢.

Let Z, be the subvariety of P¥~! = P(}/) defined by I and let R =
R(t, N) = S /I be its homogeneous coordinate ring. As before, we think of
a point in P¥~! as an element in the space IV of N X 1 column vectors;
the coordinate functional X, plucks out the ith row; cf. Section 2.1. The
variety Z, < P(}') has a combinatorial description as the set of all column
vectors in I of complexity at most ¢; see the proof of Proposition 4.2.

4.2. Primary Decomposition of 1
Let

J,

{UTRPIERN 2

)=(Xllea---.)?i,-.-,X,...,XN)

be the ideal of S generated by all the variables X; except X;, X, ,..., X;.
One easily checks that the minimal primes of I are exactly the prime
ideals J; ; . ;, as {i;i,,...,i,} ranges over all possible t-tuples of
integers 1 < i, <i, < .- <i, < N.Because [ is radical, the intersection
of these ideals is a primary decomposmon for I. Also, because the height
of each such J; ; ;. is N —t, we see that R(¢, N) = S/I is equidimen-
sional of dimension z.

In other words, the variety Z, c P(}) is the union of all the ¢ — 1-
dimensional coordinate planes in P(}). This variety is of pure dimension
t— 1

4.1. PROPOSITION. The Noether cobasis complexity of R is Nt — (t — L)t.
Furthermore, every linear space of P(V') of maximal dimension disjoint from
Z, has cobasis complexity exactly tN — (¢t — 1)t.

Proof. LetY = MX, + A, X, + - +Ay X,y beany linear form in S. If
the complexity of Y is less than N — ¢ + 1, then Y is contained in some
ideal J; i (For instance, one may choose any set of indices
{igipy . oht)} such that the corresponding coefficients A, A, ,..., A; are
all zero: the bound on the complexity of Y ensures the eX|stence of at least
t distinct such indices i;.)

Therefore, given a Imear system of parameters Y, = £ 1A;: Xy for S/1,
each of the ¢ parameters Y, must have complexity at least N —t + 1. This
gives the immediate lower bound on the Noether complexity of I, namely,

t(N—1t+1).



540 GLASSBRENNER AND SMITH

On the other hand, this lower bound is also an upper bound, by 2.4. In
fact, any minimally complex system of parameters can be assumed to have
the form

A A Agg NN 0 0 0 0

0 A Az AaN—r+2 0 0 0

0 0 Azz Agy AsN—+3 0 0

0 0 ) VPP N_an-2 0 0

0 0 0 0 A_1io1 A_in—1 0

O O O O O Att )\rN
(4.1.1)

after suitable row operations or permutations of rows and columns. This
matrix exhibits a system of parameters for S/I which has the desired
minimal complexity, assuming the A;; are suitably generic. Indeed, from
Proposition 3.2, we know that we have a parameter matrix if and only if all
the ¢ minors of this matrix are nonzero.

An alternative system of parameters which generates the same ideal in
S is obtained by multiplying on the left by a ¢ X ¢ invertible matrix so as to
get

(ld(t x 1), B(t X (N —1))),

where Id(¢ X ¢) is a ¢ X ¢ identity matrix and B(¢t X (N — t)) is a some
matrix of size t X (N — ¢). The matrix B(z X N — t) is completely dense:
all entries and all ¢+ minors are nonzero.

This shows that every liner space of codimension ¢ disjoint from X has
complexity tN — t(r — 1), which is maximal possible by 2.4. The parameter
matrix is the same as a cobasis representative for a linear space of
codimension ¢ in PV~ disjoint from Z,. Thus the cobasis complexity of
every such linear space is Nt — (¢t — 1)¢t, and Z, has Noether complexity
Nt — (¢ — 1)¢t, the maximum allowable by 2.4. 1

Finally, we treat the basis complexity of Z, c P(1).

4.2. PROPOSITION. Let Z, C P(V') be the variety as defined in Section
4.1. Then a codimension t plane P(W) in P(V') is disjoint from Z, if and only
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if some (equivalently, every) N X (N — t) matrix whose columns span W has
all N — t minors nonzero. Thus every linear space of codimension t disjoint
form Z, has complexity (t + 1N — t).

Proof. The variety Z, < P(}') has a nice combinatorial description: it is
the set of all column vectors in 1V of complexity at most ¢. Indeed, if

has complexity greater than ¢, then some set of ¢ + 1 coefficients A; are all
nonzero. This means that some X; -+ X; do notvanish at v, so v is not
in Z,. Conversely, if v has compIeX|ty at most t, then every set of r + 1
coeff|C|ents A; contains some A; = 0 and every X; --- X; vanishes on v.

Let B be an arbitrary N X N — ¢ matrix and let WCV be the
subspace spanned by its columns. We claim that every element in W has
complexity at least ¢ + 1 if and only if all N — ¢ minors of B are nonzero.

To see this, suppose first that some (N — ¢) minor vanishes, say the one
obtained from the first (N — ) rows of B. Then B is column-equivalent

to a matrix of the form

Id(r xr) O(rXxN—t—r)
B(N—t—rXr) ON—-t—-rXN-—t-r)
B,(t Xr) By(t XN —t—r)

where the B; are arbitrary matrices of the indicated sizes, 1d(r X r) is an
r X r identity matrix, and the Os are zero matrices of the indicated sizes.
The space W therefore contains the vector appearing as the last column of
this matrix and it has complexity at most ¢.

Conversely, if W contains a vector of complexity at most ¢, then we
choose a basis for W containing this vector: the corresponding basis matrix
B’ has a column with at least N — ¢ zeros. Thus some N — ¢ minor of B’
is zero, and because B and B’ are column-equivalent, we conclude that
B has the same property.

As in the proof of Proposition 4.1, the complexity of any N X N —¢
matrix B in which all maximal minors are nonzero is at least (¢+ + 1)
(N — t). Because this number is also an obvious upper bound on the basis
complexity of W, we conclude that the basis complexity of every linear
space of maximal dimension that is disjoint from Z, is exactly (r + 1(N

-0 1
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4.3. COROLLARY. The variety Z, C P(V') is maximally complex in every
sense:

(1) The Noether (cobasis) complexity is Nt — (t — L.
(2) The Noether basis complexity is (t + 1)(N — t).
(3) The Noether Pliicker complexity, both basis and cobasis, is (1;’ )

All of these are maximally possible for an arbitrary linear space in P(V') of
codimension t.

5. SPARSE SYSTEMS OF PARAMETERS FOR
DETERMINANTAL VARIETIES

The purpose of this section is to describe a sparse and convenient
system of parameters for determinantal varieties. It is also a system of
parameters for the variety defined by the monomial ideal of leading terms
in the standard diagonal term order. We prove that this system of parame-
ters is maximally sparse among those that admit a convenient symmetry of
being “partitioned along diagonals.” In Section 7, we will show that in
certain cases it is the sparsest possible among all system of parameters,
but we also give an example to show that it is not the sparsest possible in
general. On the other hand, in Section 6, we prove that the linear subspace
of projective space it defines is the sparsest possible in the basis sense.

5.1. Notation

Let V' be the vector space of m X n matrices with coefficients in K and
suppose m < n. Fix the standard basis {e;;} for " of matrices: e,; has zeros
in each position except the ijth position, where there is a 1. Let X;; be the
dual basis of coordinates.

The determinantal variety X, = X,(m, n) € A(J') [or P(}/)] is the subva-
riety of matrices of rank less than or equal to ¢. The variety X, is defined
by the vanishing of the size 7 + 1 minors of the m X n matrix X,;. The
coordinate ring R,(m X n) for X, is the quotient of the polynomial ring
K[ X;;] by the determinantal ideal I,, ,(m X n) generated by the size ¢ + 1
subdeterminants of X

It is easy (see, e.g., [8, p. 151]) to check that the codimension of
X, cP(V)is (m —t)Xn —1t). We set d=mn —(m —t)(n —1t)=nt+
mt — t?; this is the dimension of the affine cone over X, in A(}).
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511

The monomials of the polynomial ring k[.X;;] can be ordered by the
“diagonal term order”: the lexicographic ordering given by the ordering

Xy <Xy < 0 <Xy <Xy, <Xy < <X <Xy

of the variables. In this case, the ¢ + 1 minors of (X;;) are a Grobner basis
for the ideal 1, ,(m, n) [12].

The Noether complexity of I is bounded above by the Noether complex-
ity of the initial ideal of I in general, because a system of parameters for
S /init(I) can be suitably lifted to a system of parameters for S/I of the
same complexity [5, 2.8]. Interestingly, determinantal varieties seem to be
as complex as they can possibly be in this respect, and we believe that the
Noether complexity of a determinantal ideal may equal the Noether
complexity of its initial ideal, though we have proved this only for ¢ =
1,2,m — 1.

We now describe a family of linear forms, S, that are systems of
parameters for (K[X,-j])/I,H, and also for (K[X,-j])/init(l,ﬂ).

5.1.2. A Partition

The set S of parameters will be “partitioned along diagonals” in the
following sense. The linear forms Y; making up the system of parameters
will be partitioned into sets S, of forms made up of variables lying only on
the kth diagonal D, of X,;. More precisely, the variables X;; are parti-
tioned into sets

D1={X11}: D2={X12,X21}, D3={Xl3,X22,X31},...,
where
D, = {X,; suchthat i +; =k + 1}

consists of the elements lying on the kth (anti-)diagonal of the matrix X;;.
The set S, will consist of linear forms in the variables from D,.

5.1.3. The System of Parameters

Let S be the following set of linear forms in K[Xij]:

where each S, consists of linear combinations of the variables in the set
D, described as follows.
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We first describe S, for k <t and k > n — m — ¢, corresponding to
the “top left” and “bottom right” corners of X, Fix any |D,| X [D,]
matrix with nonzero determinant, where |D,| denotes the cardinality of
D,. Then S, is the set of linear forms in the elements of D, whose
coefficients are the rows of this matrix. Each such S, has the same
cardinality as D,. For example, a maximally sparse way to do this is to
choose the |D,| X |D,| identity matrix; in this case, each S, = D,. The
elements in these S;s contribute a total of #(z + 1) elements to the set S.

Each of the remaining sets S, is defined as follows: take any ¢ X |D,]
matrix with the property that no ¢ minor vanishes. The elements of S, are
the linear forms Y,...,Y, whose coefficients are the rows of this matrix.
Thus for each k, t <k <n +m —t, the set S, has cardinality ¢ and
consists of linear forms in the variables of D,. For example, the maximally
sparse ways of doing this are discussed in Proposition 4.1 [see matrix
(4.1.D].

5.2. THEOREM. The elements of the set S = U127 ~1'S, form a system
of parameters for the determinantal ring R = (K[X;;D/I,. . Every ideal
generated by a system of parameters that can be partitioned along the diagonals
of X,; is generated by a system of parameters of this form.

Proof. The dimension of R is d = nt + mt — t* and this is also the

cardinality of S. Thus to check that the elements {Y7,...,Y,} are a system
of parameters, we need only verify that every variable X;; of K[X;]
becomes nilpotent modulo 7,,, + (S) =1,,, + (Y;,...,Y)).

We accomplish this “diagonal by diagonal,” using induction on k, the
index for the diagonal sets.

For k <tand k = n + m — ¢, this is easy. The ideal generated by S, is
the same as the ideal generated by D,, since we can left-multiply the
matrix whose rows define S, by its inverse without affecting the ideal. So
the T variables X;; in D, are in the set S, whence they are certainly
nilpotent modulo 1., , + (S).

Assume inductively that all the elements of the diagonal sets
D,,D,,...,D,_, are nilpotent modulo 7, ; + (S), where k — 1 >t To
show the same for D,, it is enough to show that the elements of D, are
nilpotent modulo 1,,, + (Yy,...,Y,) + (D)) + (D,) + -+ +(D,_,). Note
that this ideal contains all the square-free monomials of degree ¢ + 1 in
the variables from the set D,.

By our choice of the elements Y;,Y,,...Y, of S, (re-indexing if neces-
sary), we know by Theorem 4.1 that these elements constitute a system of
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parameters for the ring

_ K[Xl(k+1)’X2k!""X(k+1)l]
(all square-free monomials of deg ¢ + 1)

Ry

By definition, then, each coordinate X;; of R, is nilpotent modulo the

L

ideal generated by the ¢ linear forms Y3,Y,,...,Y,. Thus each element of
the diagonal set D, < K[X;;]is nilpotent modulo the ideal J generated by
all the square-free monomials of degree ¢ + 1 in the variables in D, plus

the ideal S,. Because
J+ScClyy+ (Yy,....Y)) +(Dy) + (Dy) + - +(Dy_y),

we conclude that each X;; € D, is nilpotent modulo the desired ideal. It
follows that Y;,...,Y, are a system of parameters for the determinantal
ring R = (K[X;;D/1,.,.

Finally, we show that every system of parameters partitioned along the
diagonal has this form. Suppose that S = {Y;,...,Y,} can be partitioned
into sets S, such that the elements of S, are linear combinations of the
elements D, of the kth diagonal. For t <k <m + n — ¢, the natural
surjection

R/(S) »R/((S) +(Dy) + -+ (omit Dy) - +(D,, ., 1)) =R/ (Sy)

shows that R,/(S,) is zero dimensional; therefore, because R, has
dimension ¢, the cardinality of each D, is at least ¢. Similarly, the
remaining S, must have cardinality at least |D,|. A dimension count now
shows that the cardinality of each S, is exactly t for t <k <m +n — 1,
and exactly S, for the remaining choices of k. In both cases, the elements
of S, therefore form a system of parameters for R, (which is interpreted
as simply a polynomial ring in the variables of D, when ¢ > |D,]), and the
proof is complete. 1

The above procedure gives a natural way to choose sparse systems of
parameters for the determinantal ideal 7,,,(m X n). The added symmetry
of diagonal partitioning is helpful in computations. The next proposition
shows that it is the sparsest possible among all systems of parameters that
can be partitioned in this way.

5.3. COROLLARY. The cobasis complexity of the linear space defined by
the linear forms S described in Section 5.1.3 is

tmn — (t — 1)d.
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This is the sparsest possible among systems of parameters that can be parti-
tioned along diagonals. Its Pliicker (cobasis) complexity is

RIS

Proof. Because the elements of S, form a system of parameters for
R, = R(t,|D,]) (notation of Sections 5.1 and 5.1.3), we know from Proposi-
tion 4.1 that the minimal possible complexity of each S, is t(ID,| — ¢ + 1)
if m+n—1-1t>|D,|>tandis |D,|otherwise. Furthermore, given any
such S,, the ideal generated by its elements has a generating set of exactly
these minimal complexities. Thus the parameter matrix can be replaced by
a row-equivalent matrix of complexity

n+m—t—1
t(t+1)+ ) t(ID]—t+1)=mn— (r—1)d.
k=t+1

This is the complexity of every linear space cut out by a system of
parameters partitioned along the diagonals.

Let A be a parameter matrix of complexity mmn — (t — D)d. If A is
partitioned along diagonals, then A has block diagonal form, in which
appears a single (¢ + 1)r X t(¢ + 1) full rank identity matrix (grouping
together all the “corner” S,s) and blocks of size ¢ X |D,|, for k = ¢ +
1,...,m + n —t, each block corresponding to the remaining diagonals of
X;;. Each of these blocks has minimal complexity among all row-equivalent
blocks by Proposition 4.1, and so A has minimal complexity among all
row-equivalent matrices. Thus, the cobasis complexity of the linear space
defined by the linear forms S is exactly mn — (t — 1)d.

Finally, we compute the Plicker complexity. A d X d submatrix B of A
has full rank if and only if it consists of the #(r + 1) full rank block
together with exactly ¢ columns from each ¢ X |D,| block.

Indeed, given such a matrix B, it must have full rank because every ¢
minor of the ¢ X |D,| blocks is of full rank. Conversely, if B is missing a
column from the size (¢ + 1) identity matrix, then B has a row of zeros;
likewise, if B has at least ¢t + 1 columns from a ¢ X | D,| block, then these
t + 1 columns are linearly dependent, so B cannot have full rank.

The number of choices of a full rank ¢ minor from the kth diagonal is

(\Dtk\), and since these choices are independent of each other, the total
number of nonzero maximal minors of the parameter matrix is

) ) '
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The method explained here for coming up with a sparse system of
parameters for determinantal rings also works for similar rings, e.g., ladder
determinantal rings.

Finally, we point out that the linear forms S are also a linear system of
parameters for the associated variety V(init(/)) formed from the initial
ideal of I,,,(m X n) with respect to the diagonal term order described in
Section 5.1.1.

Recall that the ¢ + 1 minors of X;; are a Grcbner basis with respect to
the diagonal term order. This means that the ideal init(/) is generated by
the degree ¢ + 1 square-free monomials X; ; X, -~ X; . , where the
sequence i,,...,i,,, IS strictly decreasing and the sequence j, j,,...,J,+1
is strictly increasing.

5.4. PROPOSITION. The linear forms S described in Section 5.1.3 are a
system of parameters for (K[X;;]/init 1, ., of minimal complexity among
those that can be partitioned along diagonals. In particular, the Noether
complexity of this ring is at most mnt — (¢t — 1)d.

Proof. The fact that the elements of S are a system of parameters for
(K[X;;D/init I, , is easy to see. Note that (K[ X;;]/init I, is a homo-
morphic image of the ring

m+n—1

S= ® Rk’
k=1

where

K[variables in D, ]

R
¥~ (all square-free degree ¢ + 1 monomials)

I

is the ring studied in Section 4 (or for k < ¢, it is the polynomial ring in k
variables). Here, k indexes the diagonals of X;; and ranges from 1 to
m + n — 1. Each set S, is defined to be a system of parameters for R, so
that obviously their union is a system of parameters for the tensor product.

By computing the dimension of S we see that it is the same as the
dimension of (K[ X;;])/init I, ,, so their images under the natural surjec-
tion form a system of parameters for (K[ X;;]/init 1, ;.

Each S, is a minimally complex system of parameters for R, , as proved
in Proposition 4.1. However, now any system of parameters for
(K[X;;D/init I, , that is partitioned along diagonals must lift to a system
of parameters for S. Indeed, as in the proof of Proposition 5.2, the
parameters involving elements of the kth diagonal must be a system of
parameters for the ring obtained by Killing all variables not on this
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diagonal. So again by the results of Section 4, we conclude that S is a
sparsest possible system of parameters among systems of parameters
partitioned along the diagonals. i

It is tempting to believe that Noether complexity is additive in tensor
products. This is false! See Example 7.12.

6. BASIS COMPLEXITY FOR DETERMINANTAL
VARIETIES

The purpose of this section is to prove the following formula for the
basis complexity of determinantal varieties.

6.1. THEOREM. Let X,(m X n) be the variety of m X n matrices of rank
at most t. The Noether basis complexity of X,(m, n) is (m — t)(n — t)(t + 1).
The Noether basis complexity of the variety defined by the initial ideal of
I, (m X n)is at most (m — t)(n — )t + 1).

An explicit (and sparsest possible) basis for a linear space (of maximal
dimension) disjoint from X, is

0 0O 0 O

0 - 0 AP 0

N-D o0 0

Ak,r = 0
0 AQ 0 0

0 O 0 0 0 0 O

For each pair (k,r) with t <k <m+n—1t and 0 <r <|D,| —1t, let
AP, ..., X, be suitably generic members of K and define the matrix A4, ,
to be the m X n matrix that is zero off the kth antidiagonal D,, whose
entries X, _, .1,  Xj ooy iier ON D are AQ .. XY, respectively,
and whose other entries on D, are zero. That is, A, , is the m X n matrix
with zeros everywhere except on a single antidiagonal, on which exactly
t + 1 contiguous nonzero entries appear. The precise meaning of “‘suitably
generic” is: for each set of basis elements A4, , involving nonzero elements
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on the same diagonal D,, the (|ID,| — ¢) X |D,| matrix formed from them
must have all its maximal minors nonzero. The m X n matrices 4, , are a
collection of (n — ¢t)(m — ¢) matrices of rank ¢ + 1. We will check below
that they span a linear space of maximal dimension disjoint from X,.

The linear space spanned by the matrices above is easily seen to be
defined by a system of parameters S partitioned along diagonals, as
described in Section 5.1.3. So S gives a cobasis representation for a
minimally complex linear space (with respect to basis representation).

Proof of Theorem 6.1. The variety X,(m,n) c A(C"*") consists of
exactly the matrices of rank less than or equal to ¢. Thus, if W c V = C™*"
intersects X, trivially, then every nonzero matrix in W has rank at least
t + 1. Because X, has codimension (n — t)(m — t), there is some such W
of dimension (n — 1)(m — t). Any basis for W consists of (n — t)(m — t)
matrices of rank at least ¢+ + 1. Thus an obvious lower bound on the basis
complexity of W is (¢t + 1)(n — t)(m — t).

This lower bound is also an upper bound on the complexity, because the
linear space W given by the vanishing of the elements of S described in
Section 5.1.3 decomposes as W = @ """~ 'W,, where the W, are indexed
by the diagonals of X;;. Each W, is a subspace of the vector space V,
spanned by the vectors e;; (standard matrix notation), where the index i is
on the kth diagonal.

Because the elements of W all have rank greater than ¢, the subspace
W, of diagonal matrices contains only the linear subspace of vectors in I},
of complexity greater than ¢. In fact, computing its dimension, we see that
it is a linear subspace of V, of maximal dimension containing no element
(except zero) of complexity less than ¢ + 1; c.f. Section 4. We have seen
that such a space is a linear subspace of maximal dimension disjoint from
the varieties Z, c P(V,). From Proposition 4.2, we know that W, has
complexity exactly (+ + 1)(ID,| — ¢) for k > ¢. For k <, W, = 0, since no
matrix in this set has rank greater than . Summing over k, we arrive at the
complexity (t + 1)(n — t)(m — t) for W. This shows that the Noether basis
complexity for determinantal variety X,(m X n) is precisely (¢ + 1)(n —
t)(m —t).

The matrices A, , described following Theorem 6.1 for each fixed k are
a basis for each W, by Theorem 4.2, assuming the correct genericity
assumption on the entries as described. We can conclude that all the 4, ,
for all k are a basis for W. This basis has complexity ( + D)(m — t)(n — t),
and the proof is complete.

By the construction, it is clear that the space W we have described is
also disjoint from the variety defined by the initial ideal of I, ,(m X n).
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Thus the Noether basis complexity of
K[%,]
init(7)

isat most (r + D(m — )n — ). |

7. NOETHER COMPLEXITY OF DETERMINANTAL
VARIETIES

In this section, we prove that the systems of parameters described in
Section 5 are the sparsest possible in certain cases. We also provide
Example 7.13 to show that, by breaking the diagonal symmetry in the
systems of parameters, we can construct even sparser systems.

7.1. THEOREM. Fort = 1,2, orm — 1, the Noether cobasis complexity of
the determinantal variety X,(m, n) is

tmn — (t — 1)(tn + tm — t?) = tmn — (t — 1)d,

where d denotes the dimension of (K[X;;D/I,. . The same formula applies
for the variety defined by the initial ideal of I, (m X n).

We first focus on the proof of Theorem 7.1 in the cases t = 1 and ¢ = 2.
The following lemma will be useful.

7.2. LEMMA. Let I be a homogeneous ideal of K[ X,,..., Xy] that is
contained in the ideal J; ; ;. generated by all the variables X; except
Xy X, .., X;. Then any parameter matrix A for I has the property that the
d X t submatrix of A determined by the columns indexed i,,i,,...,i, has
rank t.

Proof. Let A = ();;) be any parameter matrix for /. The d X N matrix
A represents the system of parameters Y, = Y. ,A; X, for

(K[X,, X,,... XyD/I. In particular, the ideal I+ (Y,,Y,,...,Y,) of
K[X;, X;,... Xy] is height N. Thus the larger ideal, J, , ;5 +
(Y, Y,,...,Y,) also has height N. However, modulo this ideal, we are left
with a ring isomorphic to

K[X,, X,,....X]

L

(?l,Yz,...,Z,)

where the overbar indicates reduction modulo the ideal generated by all
the variables except X; , X, ,..., X;. Indeed, the coefficients of the ¥;s are
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given by the d X t submatrix of A determined by the columns indexed
i, i,,...,1,. Of course, any (invertible) linear change of variables produces
an isomorphic ring, so that after suitable linear coordinate change, this
ring is seen to be isomorphic to the ring
K[Xi’l,X,.’z, ...,X;I]

(X, X,,...X]) "

where s is the rank of this d X ¢ matrix. Since this quotient ring is zero
dimensional, we see that s = ¢. Therefore, the d X ¢ submatrix of A
determined by the columns indexed i,,i,,...,i, has rank z. |

7.3. DEFINITION. Let A be a d X N matrix. We say that A has the ¢th
maximal rank property (or just property M, for short) if, given any ¢
columns of A, the d X ¢ submatrix of A they determine has rank ¢.

If M,,, holds for any matrix, then clearly M, also holds.

7.4. LEMMA. Every parameter matrix of the determinantal ring
(K[X;;D /U, 1(m X n)) has the tth maximal minor property.

Proof. Consider a graded ring R = (K[ X, ..., Xy ] /I such that

Ic "(11 [PIREe i}
where J; ;s the ideal generated by all the variables except the
deS|gnated set{X , X } of ¢ variables. Any parameter matrix must

have full rank |n the submatrlx formed by the ¢ columns indexed by
1<i;<i,< -+ <i,<N.

Now note that I,+1 is contained in each ideal J, ;. for every set of
indices 1 <i; <i, < .- <i, <N. Indeed, the generators of I, , are
sums of square-free monomials of degree ¢ + 1, so the ideal generated by
these monomials. This monomial ideal, and therefore the ideal 7, ,(m X
n), is contained in the ideal J; ;) as every degree ¢ + 1 square-free
monomial is divisible by 7 + 1 distinct variables, and hence divisible by
some variable not in the designated set.

This means that every parameter matrix for determinantal varieties
satisfies the rth maximal rank property, M,. |

We get some bounds on the Noether complexity of any rings whose
parameter matrices satisfy condition M,.

7.5. ProposITION.  Let R = (K[ X,,..., XyD/I be a ring, all of whose
parameter matrices satisfy condition M,. If t = 1, then the Noether complexity
of I is at least N. If t > 2, then the Noether complexity of I is at least
2N — dim R.
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Proof. First some general observations. Fix any d X N matrix A. For
each integer & between 1 and d inclusive, let [,(A) (or simply /,) be the
number of columns of A in which at least 4 nonzero entries appear. With
this notation, the complexity of A is exactly

L+ 1+ +1,.

In particular, if A is a parameter matrix of minimal complexity for the ring
R, then denoting the Noether complexity of R by NC(1), we see that

NC(I) = L,(A) + L,(A) + - +1,(A), (75.1)

for any k < d equal to the dimension of R.

The first assertion of Proposition 7.5 is now easy to prove. If A has the
first maximal rank property M,, then every d X 1 submatrix of A has rank
1. This means that each column of A has a nonzero entry, so that
[,(A) = N for all parameter matrices A. In particular, we conclude that
NC(I) > N.

The second assertion requires more work. Fix a parameter matrix A for
R which has minimal complexity. It suffices to prove that if A satisfies the
second maximal rank property M,, then its complexity is at least 2N — d.

First an observation about A: if some row (say row i) has exactly one
nonzero entry (say A;), then the column in which this entry appears
(column j) also has exactly one nonzero entry. Indeed, if the ith row is
0,0,...,0, Aijs Oy, 0), then one may perform elementary row operations
of adding multiples of this row to the others without increasing the
complexity of A. The assumption of minimality on the complexity of A
therefore forces all the entries of column i to be zero except A;;.

Let 4 denote number of rows in which exactly one element appears. The
argument of the preceding paragraph enables us to assume, after suitable
reordering of the X;s and Y;s, that the minimally complex parameter
matrix has the form

B ld(k X k) 0(k X (N —k))
~lo((d - k) x k) B '

where Id(k X k) denotes a k X k identity matrix, 0(a X b) denotes an
a X b matrix of zeroes, and B is a (d — k) X (N — k) matrix such that
every row contains at least two nonzero entries.

Now an observation about B: if two columns of B have exactly one
nonzero entry, then they must occur in different rows. Indeed, consider the
d X 2 submatrix of A determined by the two columns indexed by j, and j,
with j,, j, > k. Because A has property M,, this d X 2 submatrix has rank
2, which means that if the columns each have exactly one nonzero entry
(which will necessarily be in B), they must appear in different rows.
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This observation about B ensures that each of the d — k rows of B
contains at most one entry A;; appearing in a column which has all entries
zero except this A;;. Therefore, at least (N — k) —(d — k) =(N —d)
columns of B contain two or more elements. That is, [,( B) [= [,( A)] is at
least N — d.

We conclude, using (7.5.1), that

NC(I) = I,(A) + L(A) = N + (N —d) = 2N — d,

and the proof is complete. |
Theorem 7.1 follows in two cases.

7.6. COROLLARY. The Noether complexity of X,(m X n) is mn. The
Noether complexity of X,(m X n) is 2mn — d. The Noether complexity of
X,(m X n) (fort > 2) is at least 2mn — d.

Proof. The computation Corollary 5.3 shows that the Noether complex-
ity is at most the asserted values for r = 1,2. The lower bound follows
from Proposition 7.5, since parameter matrices for determinantal varieties
satisfy M,. 1

We now turn to the large rank case, proving Theorem 7.1 for the case
t = m — 1. We first require a technical lemma, which restricts the parti-
tioning of systems of parameters of determinantal varieties in a strong way.

7.7. LEMMA. Let k and | be integers with 0 <k <m —tand 0 <[ <
n—t IfYy,..., Y, are a system of parameters for R = (K[X;;])/(1,, (m X
n)), then at most t(k + 1) of the parameters can be expressed as linear
combinations of the variables X;; lying in any k rows and [ columns of X;;. In
other words, if the ideal

J= (X,

i wherei =iy,....ip orj =j,....j)

contains a set of parameters, then the cardinality of that set is at most t(k + [).
(If k = 0, the notation for J is correctly interpreted by dropping the phrase
“Where i =i,,...,i, or.”

Proof. Let B be the submatrix formed by omitting rows i,,...,i, and
columns jy, ..., j, from the matrix A = (X;;). With J as above, note that
L, (A cJ+1I, (B). If Y,...,Y,cJ, then I, (A +(Y,,....Y,)C
J + I, ,(B). Consider the natural surjection

K[Xij] K[Xi.f] ~ K[ B]
LA+ (YY)  T+1,.(B)  1,(B)
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The dimension of the source ring is at least as large as the dimension of
the target ring. Computing each, we see that

d—r=mt+nt—t*>(m—k)t+ (n—10)t—1

and we conclude that r < t(k +1). 1

7.8. COROLLARY. No system of parameters for the determinantal ring
R = (K[X;;D/(,,.(m X n)) can contain t + 1 parameters from any one
row or column. In particular, no system of parameters can contain more than
mt singletons.

Proof. Thisisthecase I =0,k =1(or k =0,/ =1) from Lemma 7.7.
There would be ¢ + 1 > t(k + I) parameters involving variables from just
one row (or column). Furthermore, if there are more than mt parameters
of the form X;; (singletons), then at least one of the m rows must
contribute more than ¢ of them, a contradiction. ||

This can be used to derive some useful bounds on the Noether complex-
ity of determinantal rings, which yields the exact lower bound on the
Noether complexity in the maximal minor case.

7.9. PROPOSITION. The Noether complexity of X,(m X n) is bounded
below by

2nt + mt — 2t2.
Proof. Let k denote the number of singletons appearing in a system of
parameters of minimal complexity for (k[X;;D/(1,,(m X n)). Then the

number of elements which are not singletons is d — k and, therefore, the
Noether complexity is

NC(I,,) =k+2(d—k)=2d —k=>2d —mt =2nt —mt — 2t?,

as needed. |

7.10. COROLLARY. The Noether complexity of X,,_(m X n) of m X n
matrices of non-full rank is

(m-1)2n—-—m+2)=(m—1)(mn) — (m — 2)d,
where d denotes the dimension of X,,_(m X n).

Proof. Note that the dimension in this case is d = mn — (n — (m — 1)).
The bound Proposition 7.9 gives us that

NC(I,(m X n)) > (m —1)(2n + m — 2(m — 1)),
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while Proposition 5.3 gives
NC(I,(m X n)) < (m — 1)(mn) — (m — 2)(mn — (n —m + 1)).

Comparing these bounds we get the desired result. i

Combining Corollaries 7.10 and 7.6, the proof of Theorem 7.1 is com-
plete.

We point out a related result, describing the complexity of systems of
parameters achieved using a “‘greedy algorithm.”

7.11. PROPOSITION. The complexity of any system of parameters for
k[ X1/, (X) which contains mt singletons is tmn — (¢ — 1)d. That is, any
linear space of codimension d in P(V), disjoint from X, and contained in a
“coordinate plane of codimension mt” \(mt of the variables X;;), must have
cobasis complexity tmn — d(t — 1).

Proof. Fix a system of parameters Y;,...,Y, for k[X]/I,, (X) and
consider the singletons Y, = X;; in it. As noted in Corollary 7.8, there are
at most mzr singletons, no ¢ + 1 of which are in a single row.

If there are exactly mt singletons, then there are ¢ singletons in each
row. All other members of the system of parameters have complexity at
least m — ¢t + 1: otherwise, a nonsingleton f of complexity at most m — ¢
together with the (m — ¢)¢ singletons involving the variables from the
same rows as f is a set of (m — )t + 1 parameters involving only (m — 1)
rows, violating Lemma 7.7. This makes the complexity of the system at

least mt + (m —t + 1)(d — mt) =mnt — d(t — 1). |

7.12. CAUTIONARY ExampLES. We now construct an example to show
that the systems of parameters constructed in Section 5 are not the
sparsest possible for all ¢, while laying another naive conjecture to rest.

Suppose that S, and S, are graded rings with fixed coordinates
Xy, .., X, and Xi,..., X, , respectively. If Y;,...,Y, and Y{,..., Y, are
maximally sparse systems of parameters for S, and S,, respectively, then
Yy, ..., Y],....Y, is asystem of parameters for §; & S, with respect
to the coordinates X,,..., X, , X7,..., X, . The corresponding parameter
matrix is quite sparse, and has a nice symmetry that may be useful in

practice:

A 0(d; X ny)
0(d, X ny) X k) B ’

where 0(a X b) denotes an a X b matrix of zeroes, A is a maximally
sparse parameter matrix for S;, and B is a maximally sparse parameter
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matrix for S,. However, this need not be a maximally sparse system of
parameters for S; ® S,. In particular, NC(S; ® S,) = NC(S;) + NC(S,) in
general.

We now give an explicit example of this phenomenon and use it to
construct a system of parameters for a determinantal variety X,(9 X n),
where n > 9, which is sparser than the nice system of parameters con-
structed in Section 5.

7.13. ExamPLE. Consider a 4 X 9 matrix of the form

[ IS SN
R Sk R
> Or Pk
o 0 kO
~ L+ O
> Or o
S ® Oor
O\ O
N oo

One can verify that for generic values of indeterminates a, b, ..., p, this
matrix has every 4-minor nonzero. Thus it is a parameter matrix for a ring
R = R(4,9) described in Section 4. The Noether cobasis complexity for R
is 24, as we have seen.

On the other hand, the ring R[X] =R ® K[X] has Noether cobasis
complexity at most 24. To see this, we exhibit a system of parameters of
complexity 24:

U =X+ (X, +X, +X,),
Uy=X— (X, +X; + X,),
Uy =X — (X, + X, + X,),
Y,,
Y,

where Y] is the linear form in X,,..., X, determined by the ith row of the
above matrix. Indeed, the difference U, — U, is Y, and the difference
U, — U, is Y;, so the ideal these generate contains all the Y,. However,
then because all the X, are nilpotent modulo the Y;, the radical of the
ideal generated by U, U,, U, Y; Y, contains X as well, and so
{U,0,,0,,Y,,Y,} form a system of parameters. On the other hand, the
complexity of this system of parameters is 24, not 25.

We now show how to use this to create a system of parameters for a
determinantal ring of smaller complexity than would be predicted by
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Theorem 7.1. Consider a 9 X n matrix, with » > 0, and let

9+n—1
S= @ R,
k=1
as in the proof of Proposition 5.4 above, where

K[variables in D, ]
- (all square-free degree 5 monomials)

k

is the ring studied in Section 4 (or for k < ¢, or k > mn — 1 — ¢, it is the
polynomial ring in k variables).

The product R, ® Ry has a system of parameters of complexity 24, by
Example 7.13. The remaining R, have systems of parameters as deter-
mined in Section 4. The union of these elements is a system of parameters
for S. The total complexity of the union of these parameters is 36n —
3(4n +20) — 1 =mmn — (t — 1)d — 1, which is one less than expected.
Obviously, if » > 9, we can make the complexity drop significantly by
regrouping several sets of variables in the ring S.
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