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1. INTRODUCTION

Ž .Let X ; P V be an irreducible projective algebraic variety, where V is
a vector space of dimension N over an infinite field K. Most linear

Ž . Ž .subspaces P W ; P V of codimension dim X q 1 are disjoint from X.
Such linear subspaces, whose defining equations are called systems of
parameters for the coordinate ring of X, are important from both the

w xcomputational and theoretical points of view; see 5, 11, 13 and their
references. For instance, they can be used to compute cohomology of the

Ž .coherent sheaves OO n on X.X
From a computational point of view, it is most convenient and efficient

Ž .to work with a description of P W in terms of sparse data. For example,
Ž . Ž .fixing homogeneous coordinates X for P V , P W can be described asi

the common vanishing set of a collection of linear functionals Y si
ÝN l X on V. These data are sparse if many of the coefficients l arejs1 i j j i j
zero. The minimal number of nonzero l that are required as we rangei j

� 4over all linear systems of parameters Y for X is the Noether complexity}ai
measure of how complex X is with respect to the chosen coordinates.

w xIntroduced by Eisenbud and Sturmfels 5 , the Noether complexity is most
interesting from the point of view of computational algebraic geometry,
combinatorics, or coding theory, where data are usually presented in terms
of a fixed and immutable choice of coordinates, However, even from a
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theoretical point of view, this number is interesting for varieties that come
w xequipped with a natural set of coordinates; see, for example, 10 .

This paper investigates sparse systems of parameters for determinantal
¨arieties. Determinantal varieties have a preferred choice of coordinates;
their rich combinatorial structure and important role throughout mathe-
matics makes them an especially interesting example. We describe systems
of parameters for determinantal rings that are both highly symmetric and
which are sparse. We give formulas for the complexity of certain determi-
nantal varieties for several variants of the notion of Noether complexity.

An auxiliary investigation for monomial rings was necessary in this
study. We describe a nice combinatorial criterion for systems of parame-
ters for monomial rings in Section 3. As pointed out by Eisenbud and
Sturmfels, the Noether complexity of a projective variety is bounded above

Žby the Noether complexity of the initial ideal with respect to any term
.order of its defining ideal. Our work indicates that determinantal varieties

are ‘‘maximally complex’’ in the sense that the Noether complexity is
actually equal to the upper bound provided by the complexity of the initial
ideal, though we are able to prove this only for certain cases.

In the course of our investigation we discovered a variety Z such that
e¨ery linear space disjoint from Z has maximal complexity with respect to

w xany of the four variants of complexity introduced in 5 . That is, all linear
spaces of maximal dimension disjoint from Z have the same complexity,
and this is equal to the maximal possible complexity of an arbitrary linear
space of that dimension. This is so regardless of the variant of complexity
we use; see Section 4.

A final, more theoretical, reason to study the Noether complexity of
projective varieties in general is to gain information about the Chow form.
The linear spaces of codimension d s dim X q 1 which intersect X ;
Ž . dŽ .P V nontrivially form a hypersurface in the Grassmannian Gr V of

codimension d subspaces of V. This hypersurface constitutes the point
corresponding to X on the Chow variety of d y 1-dimensional subvari-

Ž .eties in P V . The Chow form is the equation, in Plucker coordinates, of¨
this hypersurface. Eisenbud and Sturmfels pointed out that the Noether

w xcomplexity can be ‘‘read off’’ the Chow form 5, 2.7 . In Section 3, we
record the Chow form for monomial varieties. In practice, however, Chow
forms are notoriously difficult to compute, and there is no formula known
for the Chow form of determinantal varieties. For the case of maximal

Žminors, however, the Chow form can be expressed as an m = n = n y
. w xm y 1 ‘‘hyperdeterminant’’; see 7, 4.13 . Our study of systems of parame-

ters for determinantal varieties is partially motivated by this connection
with the Chow form.



DETERMINANTAL VARIETIES 531

2. SPARSE DATA AND COMPLEXITY

Let W be a codimension d linear subspace of a vector space V. We
explain what we mean by ‘‘describing W by sparse data.’’

Sparsity notions are not associated to the abstract vector space V, but
� 4rather to V together with a fixed choice of basis, e s e , . . . , e . Ouri 1 n

point of view will be that this basis for V is fixed and immutable. The
� 4 Uelements of the dual basis X ; V will be called the ‘‘coordinatei

functionals’’ or ‘‘coordinates’’ for V:

0, for i / j,
X e sŽ .i j ½ 1, for i s j.

Ž .A codimension d linear subspace W ; V can be represented in at least
four different ways in terms of this fixed basis for V. A basis representation
for W is a choice of basis for W, written out as a set of N y d linear
combinations of the elements e . A cobasis representation for W is a choicei
of d linear functionals on W whose common kernel is exactly W, written
out as a set of d linear combinations of the coordinate functionals x . Ai
Plucker basis representation is a choice of a basis for H NydW in H NydV,¨
written as a combination of the preferred basis elements e n e n ??? ni i1 2

e . The Plucker cobasis representation of W is defined dually, in terms¨iNy d

of the basis X n X n ??? n X .i i i1 2 d

Note that while there is considerable choice in choosing basis and
cobasis representations for W, both its Plucker basis and Plucker cobasis¨ ¨

� 4representations are determined by e up to scalar multiple.i

2.1

We will lose no generality by making this even more explicit with the
following identifications. We identify V with the space spanned by the
column vectors e consisting of zeros in each row except the ith row, wherei
the entry is 1. The codimension d subspace W is represented by the maps

A B
W ¨ V ª VrW .

Ž .That is, W is the column space of the N = N y d matrix A; it is also the
kernel of the d = N matrix B. The rows of B can be thought of as linear
functionals Ý b x on V. The choice of A and B are the choice of a basisj i j j

Ž .and cobasis representation for W. The matrix A respectively, B can be
Ž .altered by invertible column respectively, row operations to produce a
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Ž .new basis respectively, cobasis representation for W. The N y d minors
of A are a Plucker basis representation of W, while the d minors of B are¨
a Plucker cobasis representation of W.¨

2.1. DEFINITION. The complexity of a matrix M with entries in K is
the number of nonzero entries of M. The basis complexity with respect to

� 4the basis e for V is the complexity of the least complex basis representa-i
� 4tion of W. The cobasis complexity of W with respect to the basis e for Vi

is the complexity of the least complex cobasis representation of W.

That is, the basis complexity is the complexity of the least complex
matrix A such that W is the column space of A. The cobasis complexity is
the complexity of the least complex matrix B such that W is the kernel of
B. The Plucker basis complexity is the number of nonzero N y d minors¨
of any basis representing matrix A. The Plucker cobasis complexity is the¨
number of nonzero d minors of any cobasis representing matrix B.

We record some easy general bounds on complexity for future refer-
ence.

2.2. PROPOSITION. Let W be a codimension d subspace of an N-dimen-
sional ¨ector space V. Then, with respect to any basis for V, there are the
following bounds on the complexity of W:

Ž . Ž .Ž .1 The basis complexity of W is between N y d and d q 1 N y d ,
inclusï e.

Ž . Ž .Ž .2 The cobasis complexity of W is between d and d N y d q 1 ,
inclusï e.

Ž .3 The Plucker basis and cobasis complexity are both between 1 and¨
N , inclusï e.ž /d

Proof. The space W can be identified with the column space of an
Ž .N = N y d matrix. All such matrices differ by column operations, that is,

Ž .by the action of GL N y d on the right. Because the matrix is full rank,
Ž .we may multiply by some element in GL N y d so as to create an

N y d = N y d identity matrix inside some such matrix representing W.
Ž .The bounds in 1 follow immediately.
Ž .The bounds in 2 follow similarly, since a cobasis representation of W is

Ž .a full rank d = N matrix, up to the action of GL d on the left. The
Ž .bounds in item 3 follow by computing the maximal minors in each of

these extreme cases.

We now turn our attention to the specific instance arising in computa-
tional algebraic geometry: the linear subspaces disjoint from a projective
variety.
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Ž .Let X ; P V be a projective variety of dimension d y 1. Let W ; V
Ž . Žbe a subvector space of codimension d such that P W l X is empty a
. w xsufficiently general choice of W will have this property . Let R s K X be

the homogeneous coordinate ring for X ; it is a graded ring, with fixed
presentation

w xK X , X , . . . , X1 2 N
R s ,

I

where I is the homogeneous ideal of relations on the coordinate function-
als X . If K is an infinite field, then R has a system of parametersi

Žconsisting of homogeneous elements of degree 1. These are d s dimension
.R elements Y , Y , . . . , Y of the form1 2 d

Y s l X q l X q ??? ql Xi i1 1 i2 2 i N N

Ž .that generate an ideal of R whose radical is X , . . . , X . Equivalently, a1 N
Ž . � 4linear system of parameters Y is a collection of d linear forms suchi
that the corresponding hyperplanes of zeros intersect the affine cone over
X only at the origin of V; that is, a system of parameters is precisely the

Ž .same as a cobasis for a linear space of P V of maximal dimension of
disjoint from X.

2.2. Parameter Matrices

The system of parameters will be represented by a d = N matrix, whose
ith row is the N vector

l , l , . . . , l ,Ž .i1 i2 i N

giving the defining equation for Y . We call such a matrix a parameteri
matrix; it is simply the matrix B as in Section 2.1. Of course, not every
d = N matrix defines a system of parameters for R}the parameter
matrices are identified with a Zariski open subspace of affine dN space;
see Section 3.2.

The Noether complexity of X or, equivalently, of R, with respect to the
w xfixed coordinates X is defined as follows 5 .i

Ž . Ž .2.3. DEFINITION. The Noether cobasis complexity of X ; P V with
respect to fixed coordinates X on V is the minimal possible cobasisi

Ž . Ž .complexity for a codimension d linear subvariety P W ; P V intersect-
ing X trivially. Equivalently, it is the complexity of a sparsest possible
parameter matrix for R.

Similarly, we define the Noether basis complexity and the Plucker basis¨
and cobasis complexity. The Noether cobasis complexity is of primary
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Ž w x. Ž .interest in standard computations see 5, 11 . We write NC I for the
Noether cobasis complexity and refer to this as simply the ‘‘Noether
complexity’’ without further qualification.

We stress that the definition of Noether complexity requires one to fix
the coordinates X , X , . . . , X , and then consider systems of parameters1 2 N
expressed in terms of these coordinates. Of course, one could always
perform a linear change of coordinates so as to assume that X X , X X , . . . , X X

1 2 d
Ž w X X X x.are a system of parameters for R ( K X , X , . . . , X rI; that is, there1 2 N

always exist coordinates such that the Noether complexity of I is d. The point
here is to work with a chosen set of coordinates.

Proposition 2.2 translates into some obvious bounds on Noether com-
plexity.

2.4. GENERAL BOUND ON NOETHER COMPLEXITY. Let I be any homoge-
w xneous ideal of K X , X , . . . , X . The Noether basis complexity is no greater1 2 N

Ž .Ž .than N y d d q 1 and no less than N y d. The Noether cobasis complex-
Ž .ity of I is no greater than Nd y d d y 1 and no less than d. The Noether

NPlucker basis and cobasis complexities are between 1 and , inclusï e.¨ Ž .d

A parameter matrix for R remains a parameter matrix after multiplica-
Ž .tion on the left by any element of GL d, K ; the ideal of R generated by

the corresponding linear functions is unchanged. This leads to the follow-
ing relationship between the Noether basis and cobasis complexities.
Essentially, we relate these complexities when some minimally complex
parameter matrix can be ‘‘solved’’ without increasing its complexity.

w x2.5. PROPOSITION. Let R s k X , . . . , X rI be a graded ring of dimen-1 N
Ž .sion d and C s l be a parameter matrix for R of minimal complexity.i j

Ž .Suppose that for some A g GL d, k , AC contains a d = d submatrix that is
a permutation matrix and AC has no larger complexity than C. Then the
Noether cobasis complexity of R is at least b y N q 2 d, where b denotes the
Noether basis complexity of R.

Proof. Permuting rows and columns if necessary, we assume that the
Ž .leftmost d = d minor of AC is the identity matrix. Write AC s l andi j

Ž .let cx A denote complexity of the matrix A. Associated to AC is a basis
Ž .¨ , . . . , ¨ for its null space of complexity N y 2 d q cx AC , obtained1 Nyd

by ‘‘back substitution’’ as follows. For each j s 1, . . . , N y d, let ¨ be thej
Ž .column vector that has a 1 in its j q d th entry, 0 in all other entries with

indices ) d, and whose first through dth entries are yl , . . . , yl ,1, dqj d, dqj
Ž .respectively. All together this gives a basis of complexity N y d q

Ž Ž . . Ž . Ž .cx AC y d s N y 2 d q cx AC . Thus, N y 2 d q cx AC G b, so
Ž . Ž .cx C G cx AC G b y N q 2 d.
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Example 7.13 shows that the inequality of Proposition 2.5 does not hold
for general R.

Ž .An interesting question is for what, if any, varieties X ; P V are the
general upper bounds on complexity in 2.4 realized? In Section 4 we give

Žan example of a single variety in each codimension and embedding
.dimension for which all the complexity achieves these upper limits.

3. SYSTEMS OF PARAMETERS FOR EQUIDIMENSIONAL
MONOMIAL RINGS

w xConsider a polynomial ring K X , . . . , X over a field K, and let I be1 N
any ideal generated by monomials X e1 X e2 ??? X eN in the variables X . The1 2 N i
quotient ring

w xK X , . . . , X1 N
R s

I

is called a monomial ring. The purpose of this section is to combinatorially
characterize all linear systems of parameters for equidimensional mono-
mial rings.

Ž .3.1. LEMMA. Let R be any graded or local Noetherian ring of dimen-
sion d and let Y , . . . , Y be a collection of d elements in R. The following are1 d
equï alent.

Ž .1 The elements Y , . . . , Y are a system of parameters for R.1 d

Ž .2 The images of the elements y , . . . , y are a system of parameters for1 d
the ring R s RrN obtained as the quotient by the ideal N of nilpotentred
elements in R.

Ž .3 The images of the Y generate a nilpotent ideal modulo eachi
minimal prime of R.

If , in addition, dim RrP s d for all minimal primes P of R, then the abo¨e
are equï alent to:

Ž .4 The images of the elements Y , . . . , Y are a system of parameters for1 d
e¨ery domain RrP, where P ranges through the minimal primes P of R.

The proof is an easy exercise.
Geometrically, the lemma implies that the Noether complexity of a

scheme in projective space is the same as the Noether complexity of the
associated reduced subscheme, the variety obtained as the union of its
irreducible components.
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This has a particularly nice application to monomial rings. If I is a
monomial ideal, then it has a primary decomposition

r
a ai1 i NI s X , . . . , X ,Ž .F 1 N

is1

ai j Žwhere we omit the generator X when a s 0. There are algorithms fori i j
w x .computing such a primary decomposition 3, 9, 15 . In particular, the

minimal primes of a monomial ideal are generated by subsets of the
variables. This leads to the following proposition.

w x3.2. PROPOSITION. Let I ; k X , . . . , X be an equidimensional mono-1 N
Ž .mial ideal and let P s X , . . . , X for i s 1, . . . , r be an enumeration ofi i i1 Nyd

� N 4the minimal primes of I. Then a collection of linear forms Y s Ý l Xi js1 i j j
w xdefines a system of parameters for the monomial ring k X , . . . , X rI if and1 N

only if the matrix

l l ??? l11 12 1 N

l l ??? l21 22 2 N
A s . . .. . ??? .. . .� 0

l l ??? ld1 d2 d N

satisfies the following rank condition: each of the r d = d subdeterminants
� 4formed by deleting the columns i , . . . , i indexed by the minimal primes1 Nyd

of I is nonzero.

� 4Proof. By Lemma 3.1, the set Y is a system of parameters for R ifi
and only if its image modulo each P is a system of parameters fori

w xRrP ( K X , . . . , X r X , . . . , XŽ .i 1 N i i1 Nyd

$ $
( K X , . . . , X , . . . , X , . . . , X .1 i i N1 Nyd

The latter ring is a polynomial ring in the d variables that are not
generators for P .i

It is easy to check that a set of d linear forms in a polynomial ring in d
variables form a system of parameters for R if and only if they are linearly
independent. Indeed, Y is dependent on the other Y , where Y denotesd i i

Ž .reduction modulo X , . . . , X , if and only if the ideal generated bydq1 N
Ž . Ž .Y , . . . , Y is the same as the ideal generated by Y , . . . , Y . This holds1 d 1 dy1
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w x Ž . w x Ž .if and only if K X , . . . , X r Y , . . . , Y s K X , . . . , X r Y , . . . , Y1 d 1 d 1 d 1 dy1
is not zero dimensional, that is, if and only if Y , . . . , Y is not a system of1 d
parameters for R.

This condition translates directly into the rank condition of Proposi-
tion 3.2.

3.1

Proposition 3.2 allows one to easily check whether any set of linear
forms is a system of parameters for a given equidimensional monomial
ring, at least in theory. This does not mean that we have an explicit
formula for Noether complexity, though it is clearly possible to describe, in
terms of combinatorial data, how much overlapping occurs between the
minimal primes.

We also note from Proposition 3.2 that the Plucker cobasis complexity¨
for an equidimensional monomial ring is at least as large as the number of
its minimal primes. This inequality relationship might be strict. For in-
stance the Plucker complexity of the union of the coordinate spaces¨
spanned by X , X and X , X is larger than 2.1 2 3 4

3.2. The Chow Form

Ž .For any equidimensional projective variety X ; P V of dimension
Ž .d q 1, the codimension d planes in P V that intersect X form a hyper-

dŽ . Ž .surface in the Grassmannian Gr V of all codimension d planes in P V .
Ž . dŽ . w xWe denote the Plucker cobasis coordinates for Gr V by j j ??? j .¨ 1 2 d

This means that given a codimension d plane W, presented as the kernel
w xof a d = N cobasis matrix AA, the symbol j j ??? j denotes the determi-1 2 d

nant of the d = d matrix formed by the columns j - j - ??? - j . The1 2 d
dŽ .Plucker coordinates of a point in Gr V are well defined up to constant¨

nonzero multiple.
dŽ .The hypersurface in Gr V of planes intersecting X nontrivially is the

vanishing set of a single polynomial F in Plucker coordinates: F is a¨X X
Chow form of X. Technically speaking, this makes sense as stated only up
to the radical, but for reduced X, the Chow form has no repeated factors.

Ž .The degree of polynomial F is the degree of the variety X in P V . TheX
Ž rŽ d U ..form F g P Sym H V is the point corresponding to X on the ChowX

variety parametrizing all degree r and dimension d y 1 subvarieties of
Ž . w x w xP V . See 8 or 2 for more on Chow forms and Chow varieties. For the

w xdefinition of Chow polytopes and their relation to Chow forms, see 10 .
Despite}or because of}their importance, Chow forms are quite com-

plicated and difficult to compute. Though the Chow form can be computed
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w xsingly in exponential time 1 , this is unfeasible for most interesting
varieties. From a theoretical point of view, we prefer to have some general
results for nice families of varieties, such as determinantal varieties. This
has been accomplished for determinantal varieties of maximal minors and
of 2-minors.

3.3

The Noether complexity can be read off the Chow form, at least in
Ž .theory. The Noether complexity of X ; P V is the least number of

variables c appearing in any initial monomial of F as we range over alli j X
w x w xterm orders in K c 5, 2.7 . Here the c are the indeterminate coeffi-i j i j

Ž .cients of the codim X = dim V matrix whose maximal minors are the
Plucker coordinates.¨

Using Proposition 3.2, the Chow form of the varieties under considera-
tion in this section is easy to write down.

Ž . Ny13.3. COROLLARY. Let Z s V I s; P be defined by a monomial
ideal I of pure height N y d, i.e., Z is a union of coordinate hyperplanes all of
the same dimension. Then the Chow form for Z is

w xj ??? j ,Ł 1 d
1Fj - ??? -j FN1 d

where the product is taken o¨er all indices j , . . . , j , such that the sets of1 d
� 4 � 4elements X , . . . , X y X , . . . , X generate the minimal primes of I1 N j j1 d

Ž .equï alently, define an irreducible component of Z . By definition, a codi-
mension d plane in P Ny1 intersects Z nontrï ially if and only if it Plucker¨
Ž .cobasis coordinates satisfy this equation.

From this expression, we confirm that equidimensional varieties that are
unions of coordinate planes have degree equal to the number of their
irreducible components.

4. A MAXIMALLY COMPLEX VARIETY

In this section, we study monomial rings closely related to the determi-
nantal varieties. These turn out to be an intersecting class of varieties
because they are maximally complex, for every sense of the Noether
complexity discussed in Section 2. We will make use of these results in the
next sections.
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4.1. Notation

w xLet S s K X , X , . . . , X and let I be the ideal generated by all the1 2 N
degree t q 1 square-free monomials in the variables X , . . . , X . Here, N1 N
is assumed larger than t.

Ny1 Ž .Let Z be the subvariety of P s P V defined by I and let R st
Ž .R t, N s SrI be its homogeneous coordinate ring. As before, we think of

a point in P Ny1 as an element in the space V of N = 1 column vectors;
the coordinate functional X plucks out the ith row; cf. Section 2.1. Thei

Ž .variety Z ; P V has a combinatorial description as the set of all columnt
vectors in V of complexity at most t; see the proof of Proposition 4.2.

4.2. Primary Decomposition of I

Let

ˆ ˆJ s X , X , . . . , X , . . . , X , . . . , Xž /�i , i , . . . , i 4 1 2 i i N1 2 t 1 t

be the ideal of S generated by all the variables X except X , X , . . . , X .i i i i1 2 t

One easily checks that the minimal primes of I are exactly the prime
� 4ideals J as i , i , . . . , i ranges over all possible t-tuples of�i , i , . . . , i 4 1 2 t1 2 t

integers 1 F i - i - ??? - i F N. Because I is radical, the intersection1 2 t
of these ideals is a primary decomposition for I. Also, because the height

Ž .of each such J is N y t, we see that R t, N s SrI is equidimen-�i , i , . . . , i 41 2 t

sional of dimension t.
Ž .In other words, the variety Z ; P V is the union of all the t y 1-t

Ž .dimensional coordinate planes in P V . This variety is of pure dimension
t y 1.

Ž .4.1. PROPOSITION. The Noether cobasis complexity of R is Nt y t y 1 t.
Ž .Furthermore, e¨ery linear space of P V of maximal dimension disjoint from

Ž .Z has cobasis complexity exactly tN y t y 1 t.t

Proof. Let Y s l X q l X q ??? ql X be any linear form in S. If1 1 2 2 N N
the complexity of Y is less than N y t q 1, then Y is contained in some

Žideal J . For instance, one may choose any set of indices�i , i , . . . , i 41 2 t
� 4i , i , . . . , i such that the corresponding coefficients l , l , . . . , l are1 2 t i i i1 2 t

all zero: the bound on the complexity of Y ensures the existence of at least
.t distinct such indices i .j

Therefore, given a linear system of parameters Y s ÝN l X for SrI,j is1 ji N
each of the t parameters Y must have complexity at least N y t q 1. Thisj
gives the immediate lower bound on the Noether complexity of I, namely,

t N y t q 1 .Ž .
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On the other hand, this lower bound is also an upper bound, by 2.4. In
fact, any minimally complex system of parameters can be assumed to have
the form

l l l ??? l 0 0 0 ??? 011 12 13 1 Ny tq1

0 l l ??? ??? l 0 0 ??? 022 23 2 Ny tq2

0 0 l l ??? ??? l 0 ??? 033 34 3 Ny tq3
. . . . . . . . .. . . . . . . . . ,. . . . . . . . .
0 ??? 0 l ??? ??? l 0 0ty2 ty2 ty2 Ny2

0 0 ??? 0 0 l ??? ??? l 0� 0ty1 ty1 ty1 Ny1

0 0 0 ??? 0 0 l ??? ??? lt t t N

4.1.1Ž .

after suitable row operations or permutations of rows and columns. This
matrix exhibits a system of parameters for SrI which has the desired
minimal complexity, assuming the l are suitably generic. Indeed, fromi j

Proposition 3.2, we know that we have a parameter matrix if and only if all
the t minors of this matrix are nonzero.

An alternative system of parameters which generates the same ideal in
S is obtained by multiplying on the left by a t = t invertible matrix so as to
get

Id t = t , BB t = N y t ,Ž . Ž .Ž .Ž .

Ž . Ž Ž ..where Id t = t is a t = t identity matrix and BB t = N y t is a some
Ž . Ž .matrix of size t = N y t . The matrix BB t = N y t is completely dense:

all entries and all t minors are nonzero.
This shows that every liner space of codimension t disjoint from X has

Ž .complexity tN y t t y 1 , which is maximal possible by 2.4. The parameter
matrix is the same as a cobasis representative for a linear space of
codimension t in P Ny1 disjoint from Z . Thus the cobasis complexity oft

Ž .every such linear space is Nt y t y 1 t, and Z has Noether complexityt
Ž .Nt y t y 1 t, the maximum allowable by 2.4.

Ž .Finally, we treat the basis complexity of Z ; P V .t

Ž .4.2. PROPOSITION. Let Z ; P V be the ¨ariety as defined in Sectiont
Ž . Ž .4.1. Then a codimension t plane P W in P V is disjoint from Z if and onlyt
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Ž . Ž .if some equï alently, e¨ery N = N y t matrix whose columns span W has
all N y t minors nonzero. Thus e¨ery linear space of codimension t disjoint

Ž .Ž .form Z has complexity t q 1 N y t .t

Ž .Proof. The variety Z ; P V has a nice combinatorial description: it ist
the set of all column vectors in V of complexity at most t. Indeed, if

...
l¨ s i k
...

has complexity greater than t, then some set of t q 1 coefficients l are alli
nonzero. This means that some X ??? X do not vanish at ¨ , so ¨ is noti i1 tq1

in Z . Conversely, if ¨ has complexity at most t, then every set of t q 1t
coefficients l contains some l s 0 and every X ??? X vanishes on ¨ .i i i i1 tq1

Let BB be an arbitrary N = N y t matrix and let W ; V be the
subspace spanned by its columns. We claim that every element in W has
complexity at least t q 1 if and only if all N y t minors of BB are nonzero.

Ž .To see this, suppose first that some N y t minor vanishes, say the one
Ž .obtained from the first N y t rows of BB. Then BB is column-equivalent

to a matrix of the form

Id r = r 0 r = N y t y rŽ . Ž .
B N y t y r = r 0 N y t y r = N y t y rŽ . Ž . ,1� 0B t = r B t = N y t y rŽ . Ž .2 3

Ž .where the B are arbitrary matrices of the indicated sizes, Id r = r is ani
r = r identity matrix, and the 0s are zero matrices of the indicated sizes.
The space W therefore contains the vector appearing as the last column of
this matrix and it has complexity at most t.

Conversely, if W contains a vector of complexity at most t, then we
choose a basis for W containing this vector: the corresponding basis matrix
BB

X has a column with at least N y t zeros. Thus some N y t minor of BB
X

is zero, and because BB and BB
X are column-equivalent, we conclude that

BB has the same property.
As in the proof of Proposition 4.1, the complexity of any N = N y t

Ž .matrix BB in which all maximal minors are nonzero is at least t q 1
Ž .N y t . Because this number is also an obvious upper bound on the basis
complexity of W, we conclude that the basis complexity of every linear

Ž .Žspace of maximal dimension that is disjoint from Z is exactly t q 1 Nt
.y 1 .
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Ž .4.3. COROLLARY. The ¨ariety Z ; P V is maximally complex in e¨eryt
sense:

Ž . Ž . Ž .1 The Noether cobasis complexity is Nt y t y 1 t.

Ž . Ž .Ž .2 The Noether basis complexity is t q 1 N y t .

NŽ .3 The Noether Plucker complexity, both basis and cobasis, is .¨ ž /t

Ž .All of these are maximally possible for an arbitrary linear space in P V of
codimension t.

5. SPARSE SYSTEMS OF PARAMETERS FOR
DETERMINANTAL VARIETIES

The purpose of this section is to describe a sparse and convenient
system of parameters for determinantal varieties. It is also a system of
parameters for the variety defined by the monomial ideal of leading terms
in the standard diagonal term order. We prove that this system of parame-
ters is maximally sparse among those that admit a convenient symmetry of
being ‘‘partitioned along diagonals.’’ In Section 7, we will show that in
certain cases it is the sparsest possible among all system of parameters,
but we also give an example to show that it is not the sparsest possible in
general. On the other hand, in Section 6, we prove that the linear subspace
of projective space it defines is the sparsest possible in the basis sense.

5.1. Notation

Let V be the vector space of m = n matrices with coefficients in K and
� 4suppose m F n. Fix the standard basis e for V of matrices: e has zerosi j i j

in each position except the ijth position, where there is a 1. Let X be thei j
dual basis of coordinates.

Ž . Ž . w Ž .xThe determinantal variety X s X m, n ; A V or P V is the subva-t t
riety of matrices of rank less than or equal to t. The variety X is definedt
by the vanishing of the size t q 1 minors of the m = n matrix X . Thei j

Ž .coordinate ring R m = n for X is the quotient of the polynomial ringt t
w x Ž .K X by the determinantal ideal I m = n generated by the size t q 1i j tq1

subdeterminants of X .i j
Ž w x.It is easy see, e.g., 8, p. 151 to check that the codimension of

Ž . Ž .Ž . Ž .Ž .X ; P V is m y t n y t . We set d s mn y m y t n y t s nt qt
2 Ž .mt y t ; this is the dimension of the affine cone over X in A V .t
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5.1.1

w xThe monomials of the polynomial ring k X can be ordered by thei j
‘‘diagonal term order’’: the lexicographic ordering given by the ordering

X - X - ??? - X - X - X - ??? - X - X1n 1Žny1. 11 2 n 2Žny1. m2 m1

Ž .of the variables. In this case, the t q 1 minors of X are a Grobner basis¨i j
Ž . w xfor the ideal I m, n 12 .tq1

The Noether complexity of I is bounded above by the Noether complex-
ity of the initial ideal of I in general, because a system of parameters for

Ž .Srinit I can be suitably lifted to a system of parameters for SrI of the
w xsame complexity 5, 2.8 . Interestingly, determinantal varieties seem to be

as complex as they can possibly be in this respect, and we believe that the
Noether complexity of a determinantal ideal may equal the Noether
complexity of its initial ideal, though we have proved this only for t s
1, 2, m y 1.

We now describe a family of linear forms, SS , that are systems of
Ž w x. Ž w x. Ž .parameters for K X rI , and also for K X rinit I .i j tq1 i j tq1

5.1.2. A Partition

The set SS of parameters will be ‘‘partitioned along diagonals’’ in the
following sense. The linear forms Y making up the system of parametersi
will be partitioned into sets SS of forms made up of variables lying only onk
the k th diagonal D of X . More precisely, the variables X are parti-k i j i j
tioned into sets

� 4 � 4 � 4D s X , D s X , X , D s X , X , X , . . . ,1 11 2 12 21 3 13 22 31

where

D s X such that i q j s k q 1� 4k i j

Ž .consists of the elements lying on the k th anti- diagonal of the matrix X .i j
The set SS will consist of linear forms in the variables from D .k k

5.1.3. The System of Parameters

w xLet SS be the following set of linear forms in K X :i j

mqny1

SS s SS ,D k
ks1

where each SS consists of linear combinations of the variables in the setk
D , described as follows.k
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We first describe SS for k F t and k G n y m y t, corresponding tok
< < < <the ‘‘top left’’ and ‘‘bottom right’’ corners of X . Fix any D = Di j k k

< <matrix with nonzero determinant, where D denotes the cardinality ofk

D . Then SS is the set of linear forms in the elements of D whosek k k

coefficients are the rows of this matrix. Each such SS has the samek

cardinality as D . For example, a maximally sparse way to do this is tok
< < < <choose the D = D identity matrix; in this case, each SS s D . Thek k k k

Ž .elements in these SS s contribute a total of t t q 1 elements to the set SS .k
< <Each of the remaining sets SS is defined as follows: take any t = Dk k

matrix with the property that no t minor vanishes. The elements of SS arek

the linear forms Y , . . . , Y whose coefficients are the rows of this matrix.1 t

Thus for each k, t - k - n q m y t, the set SS has cardinality t andk

consists of linear forms in the variables of D . For example, the maximallyk
wsparse ways of doing this are discussed in Proposition 4.1 see matrix

Ž .x4.1.1 .

5.2. THEOREM. The elements of the set SS s D nqmy1SS form a systemks1 k
Ž w x.of parameters for the determinantal ring R s K X rI . E¨ery ideali j tq1

generated by a system of parameters that can be partitioned along the diagonals
of X is generated by a system of parameters of this form.i j

Proof. The dimension of R is d s nt q mt y t 2 and this is also the
� 4cardinality of SS . Thus to check that the elements Y , . . . , Y are a system1 d

w xof parameters, we need only verify that every variable X of K Xi j i j
Ž . Ž .becomes nilpotent modulo I q SS s I q Y , . . . , Y .tq1 tq1 1 d

We accomplish this ‘‘diagonal by diagonal,’’ using induction on k, the
index for the diagonal sets.

For k F t and k G n q m y t, this is easy. The ideal generated by SS isk

the same as the ideal generated by D , since we can left-multiply thek

matrix whose rows define SS by its inverse without affecting the ideal. Sok

the T variables X in D are in the set SS , whence they are certainlyi j k
Ž .nilpotent modulo I q SS .tq1

Assume inductively that all the elements of the diagonal sets
Ž .D , D , . . . , D are nilpotent modulo I q SS , where k y 1 G t. To1 2 ky1 tq1

show the same for D , it is enough to show that the elements of D arek k
Ž . Ž . Ž . Ž .nilpotent modulo I q Y , . . . , Y q D q D q ??? q D . Notetq1 1 d 1 2 ky1

that this ideal contains all the square-free monomials of degree t q 1 in
the variables from the set D .k

ŽBy our choice of the elements Y , Y , . . . Y of SS re-indexing if neces-1 2 t k
.sary , we know by Theorem 4.1 that these elements constitute a system of
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parameters for the ring

K X , X , . . . , X1Ž kq1. 2 k Žkq1.1
R s .k all square-free monomials of deg t q 1Ž .

By definition, then, each coordinate X of R is nilpotent modulo thei j k
ideal generated by the t linear forms Y , Y , . . . , Y . Thus each element of1 2 t

w xthe diagonal set D ; K X is nilpotent modulo the ideal J generated byk i j
all the square-free monomials of degree t q 1 in the variables in D plusk
the ideal SS . Becausek

J q SS ; I q Y , . . . , Y q D q D q ??? q D ,Ž . Ž . Ž . Ž .k tq1 1 d 1 2 ky1

we conclude that each X g D is nilpotent modulo the desired ideal. Iti j k
follows that Y , . . . , Y are a system of parameters for the determinantal1 d

Ž w x.ring R s K X rI .i j tq1
Finally, we show that every system of parameters partitioned along the

� 4diagonal has this form. Suppose that SS s Y , . . . , Y can be partitioned1 d
into sets SS such that the elements of SS are linear combinations of thek k
elements D of the kth diagonal. For t - k - m q n y t, the naturalk
surjection

Rr SS ¸Rr SS q D q??? omit D ???q D (R r SSŽ . Ž . Ž . Ž . Ž . Ž .Ž .1 k mqny1 k k

Ž .shows that R r SS is zero dimensional; therefore, because R hask k k
dimension t, the cardinality of each D is at least t. Similarly, thek

< <remaining SS must have cardinality at least D . A dimension count nowt k
shows that the cardinality of each SS is exactly t for t - k - m q n y t,k
and exactly SS for the remaining choices of k. In both cases, the elementsk

Žof SS therefore form a system of parameters for R which is interpretedk k
< <.as simply a polynomial ring in the variables of D when t ) D , and thek k

proof is complete.

The above procedure gives a natural way to choose sparse systems of
Ž .parameters for the determinantal ideal I m = n . The added symmetrytq1

of diagonal partitioning is helpful in computations. The next proposition
shows that it is the sparsest possible among all systems of parameters that
can be partitioned in this way.

5.3. COROLLARY. The cobasis complexity of the linear space defined by
the linear forms SS described in Section 5.1.3 is

tmn y t y 1 d.Ž .
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This is the sparsest possible among systems of parameters that can be parti-
Ž .tioned along diagonals. Its Plucker cobasis complexity is¨

nymq1 2 2 2
m t q 1 t q 2 m y 1

??? .ž / ž / ž / ž /t t t t

Proof. Because the elements of SS form a system of parameters fork
Ž < <. Ž .R ( R t, D notation of Sections 5.1 and 5.1.3 , we know from Proposi-k k

Ž < < .tion 4.1 that the minimal possible complexity of each SS is t D y t q 1k k
< < < <if m q n y 1 y t G D G t and is D otherwise. Furthermore, given anyk k

such SS , the ideal generated by its elements has a generating set of exactlyk
these minimal complexities. Thus the parameter matrix can be replaced by
a row-equivalent matrix of complexity

nqmyty1
< <t t q 1 q t D y t q 1 s tmn y t y 1 d.Ž . Ž .Ž .Ý k

kstq1

This is the complexity of every linear space cut out by a system of
parameters partitioned along the diagonals.

Ž .Let AA be a parameter matrix of complexity tmn y t y 1 d. If AA is
partitioned along diagonals, then AA has block diagonal form, in which

Ž . Ž . Žappears a single t q 1 t = t t q 1 full rank identity matrix grouping
. < <together all the ‘‘corner’’ SS s and blocks of size t = D , for k s t qk k

1, . . . , m q n y t, each block corresponding to the remaining diagonals of
X . Each of these blocks has minimal complexity among all row-equivalenti j
blocks by Proposition 4.1, and so AA has minimal complexity among all
row-equivalent matrices. Thus, the cobasis complexity of the linear space

Ž .defined by the linear forms SS is exactly tmn y t y 1 d.
Finally, we compute the Plucker complexity. A d = d submatrix BB of AA¨

Ž .has full rank if and only if it consists of the t t q 1 full rank block
< <together with exactly t columns from each t = D block.k

Indeed, given such a matrix BB, it must have full rank because every t
< <minor of the t = D blocks is of full rank. Conversely, if BB is missing ak

Ž .column from the size t t q 1 identity matrix, then BB has a row of zeros;
< <likewise, if BB has at least t q 1 columns from a t = D block, then thesek

t q 1 columns are linearly dependent, so BB cannot have full rank.
The number of choices of a full rank t minor from the kth diagonal is

< <D k , and since these choices are independent of each other, the totalž /t

number of nonzero maximal minors of the parameter matrix is

nymq1 2 2 2
m t q 1 t q 2 m y 1

??? .ž / ž / ž / ž /t t t t
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The method explained here for coming up with a sparse system of
parameters for determinantal rings also works for similar rings, e.g., ladder
determinantal rings.

Finally, we point out that the linear forms SS are also a linear system of
Ž Ž ..parameters for the associated variety V init I formed from the initial

Ž .ideal of I m = n with respect to the diagonal term order described intq1
Section 5.1.1.

Recall that the t q 1 minors of X are a Grobner basis with respect to¨i j
Ž .the diagonal term order. This means that the ideal init I is generated by

the degree t q 1 square-free monomials X X ??? X , where thei j i j i j1 1 2 2 tq1 tq1

sequence i , . . . , i is strictly decreasing and the sequence j , j , . . . , j1 tq1 1 2 tq1
is strictly increasing.

5.4. PROPOSITION. The linear forms SS described in Section 5.1.3 are a
Ž w x.system of parameters for K X rinit I of minimal complexity amongi j tq1

those that can be partitioned along diagonals. In particular, the Noether
Ž .complexity of this ring is at most mnt y t y 1 d.

Proof. The fact that the elements of SS are a system of parameters for
Ž w x. Ž w x.K X rinit I is easy to see. Note that K X rinit I is a homo-i j tq1 i j tq1
morphic image of the ring

mqny1

S s R ,m k
ks1

where

w xK variables in Dk
R (k all square-free degree t q 1 monomialsŽ .

Žis the ring studied in Section 4 or for k F t, it is the polynomial ring in k
.variables . Here, k indexes the diagonals of X and ranges from 1 toi j

m q n y 1. Each set SS is defined to be a system of parameters for R , sok k
that obviously their union is a system of parameters for the tensor product.

By computing the dimension of S we see that it is the same as the
Ž w x.dimension of K X rinit I , so their images under the natural surjec-i j tq1

Ž w x.tion form a system of parameters for K X rinit I .i j tq1
Each SS is a minimally complex system of parameters for R , as provedk k

in Proposition 4.1. However, now any system of parameters for
Ž w x.K X rinit I that is partitioned along diagonals must lift to a systemi j tq1
of parameters for S. Indeed, as in the proof of Proposition 5.2, the
parameters involving elements of the k th diagonal must be a system of
parameters for the ring obtained by killing all variables not on this
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diagonal. So again by the results of Section 4, we conclude that SS is a
sparsest possible system of parameters among systems of parameters
partitioned along the diagonals.

It is tempting to believe that Noether complexity is additive in tensor
products. This is false! See Example 7.12.

6. BASIS COMPLEXITY FOR DETERMINANTAL
VARIETIES

The purpose of this section is to prove the following formula for the
basis complexity of determinantal varieties.

Ž .6.1. THEOREM. Let X m = n be the ¨ariety of m = n matrices of rankt
Ž . Ž .Ž .Ž .at most t. The Noether basis complexity of X m, n is m y t n y t t q 1 .t

The Noether basis complexity of the ¨ariety defined by the initial ideal of
Ž . Ž .Ž .Ž .I m = n is at most m y t n y t t q 1 .tq1

Ž . ŽAn explicit and sparsest possible basis for a linear space of maximal
.dimension disjoint from X ist

0 0 ??? ??? 0 0¡ ¦
. . .. . .. . .

Ž t .0 ??? 0 ??? 0 l 0k r

Ž ty1.0 ??? l 0 ??? 0k rA s .. .k , r . . 0. .
Ž0.0 l ??? 0 0k r

. .. ??? .. .¢ §
0 0 0 ??? 0 0 0 0

Ž . < <For each pair k, r with t F k - m q n y t and 0 F r - D y t, letk
lŽ0. , . . . , lŽ t . be suitably generic members of K and define the matrix Ak , r k , r k , r
to be the m = n matrix that is zero off the k th antidiagonal D , whosek
entries X , . . . , X on D are lŽ0. , . . . , lŽ t . , respectively,ky r , rq1 kyryt, rqtq1 k k , r k , r
and whose other entries on D are zero. That is, A is the m = n matrixk k , r
with zeros everywhere except on a single antidiagonal, on which exactly
t q 1 contiguous nonzero entries appear. The precise meaning of ‘‘suitably
generic’’ is: for each set of basis elements A involving nonzero elementsk , r



DETERMINANTAL VARIETIES 549

Ž < < . < <on the same diagonal D , the D y t = D matrix formed from themk k k

must have all its maximal minors nonzero. The m = n matrices A are ak , r
Ž .Ž .collection of n y t m y t matrices of rank t q 1. We will check below

that they span a linear space of maximal dimension disjoint from X .t
The linear space spanned by the matrices above is easily seen to be

defined by a system of parameters SS partitioned along diagonals, as
described in Section 5.1.3. So SS gives a cobasis representation for a

Ž .minimally complex linear space with respect to basis representation .

Ž . Ž m= n.Proof of Theorem 6.1. The variety X m, n ; A C consists oft

exactly the matrices of rank less than or equal to t. Thus, if W ; V ( C m= n

intersects X trivially, then e¨ery nonzero matrix in W has rank at leastt
Ž .Ž .t q 1. Because X has codimension n y t m y t , there is some such Wt

Ž .Ž . Ž .Ž .of dimension n y t m y t . Any basis for W consists of n y t m y t
matrices of rank at least t q 1. Thus an obvious lower bound on the basis

Ž .Ž .Ž .complexity of W is t q 1 n y t m y t .
This lower bound is also an upper bound on the complexity, because the

linear space W given by the vanishing of the elements of SS described in
Section 5.1.3 decomposes as W ( [mq ny1W , where the W are indexedk kks1
by the diagonals of X . Each W is a subspace of the vector space Vi j k k

Ž .spanned by the vectors e standard matrix notation , where the index ij isi j

on the k th diagonal.
Because the elements of W all have rank greater than t, the subspace

W of diagonal matrices contains only the linear subspace of vectors in Vk k

of complexity greater than t. In fact, computing its dimension, we see that
it is a linear subspace of V of maximal dimension containing no elementk
Ž .except zero of complexity less than t q 1; c.f. Section 4. We have seen
that such a space is a linear subspace of maximal dimension disjoint from

Ž .the varieties Z ; P V . From Proposition 4.2, we know that W hast k k
Ž .Ž < < .complexity exactly t q 1 D y t for k ) t. For k F t, W s 0, since nok k

matrix in this set has rank greater than t. Summing over k, we arrive at the
Ž .Ž .Ž .complexity t q 1 n y t m y t for W. This shows that the Noether basis

Ž . Ž .Žcomplexity for determinantal variety X m = n is precisely t q 1 n yt
.Ž .t m y t .

The matrices A described following Theorem 6.1 for each fixed k arek , r

a basis for each W , by Theorem 4.2, assuming the correct genericityk

assumption on the entries as described. We can conclude that all the Ak , r
Ž .Ž .Ž .for all k are a basis for W. This basis has complexity t q 1 m y t n y t ,

and the proof is complete.
By the construction, it is clear that the space W we have described is

Ž .also disjoint from the variety defined by the initial ideal of I m = n .tq1
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Thus the Noether basis complexity of

K Xi j

init IŽ .

Ž .Ž .Ž .is at most t q 1 m y t n y t .

7. NOETHER COMPLEXITY OF DETERMINANTAL
VARIETIES

In this section, we prove that the systems of parameters described in
Section 5 are the sparsest possible in certain cases. We also provide
Example 7.13 to show that, by breaking the diagonal symmetry in the
systems of parameters, we can construct even sparser systems.

7.1. THEOREM. For t s 1, 2, or m y 1, the Noether cobasis complexity of
Ž .the determinantal ¨ariety X m, n ist

tmn y t y 1 tn q tm y t 2 s tmn y t y 1 d,Ž . Ž . Ž .

Ž w x.where d denotes the dimension of K X rI . The same formula appliesi j tq1
Ž .for the ¨ariety defined by the initial ideal of I m = n .tq1

We first focus on the proof of Theorem 7.1 in the cases t s 1 and t s 2.
The following lemma will be useful.

w x7.2. LEMMA. Let I be a homogeneous ideal of K X , . . . , X that is1 N
contained in the ideal J generated by all the ¨ariables X except�i , i , . . . , i 4 i1 2 t

X , X , . . . , X . Then any parameter matrix AA for I has the property that thei i i1 2 t

d = t submatrix of AA determined by the columns indexed i , i , . . . , i has1 2 t
rank t.

Ž .Proof. Let AA s l be any parameter matrix for I. The d = N matrixi j
AA represents the system of parameters Y s ÝN l X fori js 1 i j i
Ž w x. Ž .K X , X , . . . X rI. In particular, the ideal I q Y , Y , . . . , Y of1 2 N 1 2 d

w xK X , X , . . . X is height N. Thus the larger ideal, J q1 2 N �i , i , . . . , i 41 2 t
Ž .Y , Y , . . . , Y also has height N. However, modulo this ideal, we are left1 2 d
with a ring isomorphic to

K X , X , . . . , Xi i i1 2 t ,
Y , Y , . . . , Yž /1 2 d

where the overbar indicates reduction modulo the ideal generated by all
the variables except X , X , . . . , X . Indeed, the coefficients of the Y s arei i i j1 2 t
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given by the d = t submatrix of AA determined by the columns indexed
Ž .i , i , . . . , i . Of course, any invertible linear change of variables produces1 2 t

an isomorphic ring, so that after suitable linear coordinate change, this
ring is seen to be isomorphic to the ring

X X XK X , X , . . . , Xi i i1 2 t ,X X XX , X , . . . , XŽ .i i i1 2 s

where s is the rank of this d = t matrix. Since this quotient ring is zero
dimensional, we see that s s t. Therefore, the d = t submatrix of AA

determined by the columns indexed i , i , . . . , i has rank t.1 2 t

7.3. DEFINITION. Let AA be a d = N matrix. We say that AA has the t th
Ž .maximal rank property or just property MM , for short if, given any tt

columns of AA, the d = t submatrix of AA they determine has rank t.

If MM holds for any matrix, then clearly MM also holds.tq1 t

7.4. LEMMA. E¨ery parameter matrix of the determinantal ring
Ž w x. Ž Ž ..K X r I m = n has the tth maximal minor property.i j tq1

Ž w x.Proof. Consider a graded ring R s K X , . . . , X rI such that1 N

I ; J ,�i , i , . . . , i 41 2 t

where J is the ideal generated by all the variables except the�i , . . . , i 41 t
� 4designated set X , X , . . . , X of t variables. Any parameter matrix musti i i1 2 t

have full rank in the submatrix formed by the t columns indexed by
1 F i - i - ??? - i F N.1 2 t

Now note that I is contained in each ideal J for every set oftq1 �i , . . . , i 41 t

indices 1 F i - i - ??? - i F N. Indeed, the generators of I are1 2 t tq1
sums of square-free monomials of degree t q 1, so the ideal generated by

Žthese monomials. This monomial ideal, and therefore the ideal I m =tq1
.n , is contained in the ideal J , as every degree t q 1 square-free�i , . . . , i 41 t

monomial is divisible by t q 1 distinct variables, and hence divisible by
some variable not in the designated set.

This means that every parameter matrix for determinantal varieties
satisfies the t th maximal rank property, MM .t

We get some bounds on the Noether complexity of any rings whose
parameter matrices satisfy condition MM .t

Ž w x.7.5. PROPOSITION. Let R s K X , . . . , X rI be a ring, all of whose1 N
parameter matrices satisfy condition MM . If t s 1, then the Noether complexityt
of I is at least N. If t G 2, then the Noether complexity of I is at least
2 N y dim R.
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Proof. First some general observations. Fix any d = N matrix AA. For
Ž . Ž .each integer h between 1 and d inclusive, let l AA or simply l be theh h

number of columns of AA in which at least h nonzero entries appear. With
this notation, the complexity of AA is exactly

l q l q ??? ql .1 2 d

In particular, if AA is a parameter matrix of minimal complexity for the ring
Ž .R, then denoting the Noether complexity of R by NC I , we see that

NC I G l AA q l AA q ??? ql AA , 7.5.1Ž . Ž . Ž . Ž . Ž .1 2 k

for any k F d equal to the dimension of R.
The first assertion of Proposition 7.5 is now easy to prove. If AA has the

first maximal rank property MM , then every d = 1 submatrix of AA has rank1
1. This means that each column of AA has a nonzero entry, so that
Ž .l AA s N for all parameter matrices AA. In particular, we conclude that1
Ž .NC I G N.

The second assertion requires more work. Fix a parameter matrix AA for
R which has minimal complexity. It suffices to prove that if AA satisfies the
second maximal rank property MM , then its complexity is at least 2 N y d.2

Ž .First an observation about AA: if some row say row i has exactly one
Ž .nonzero entry say l , then the column in which this entry appearsi j

Ž .column j also has exactly one nonzero entry. Indeed, if the ith row is
Ž .0, 0, . . . , 0, l , 0, . . . , 0 , then one may perform elementary row operationsi j
of adding multiples of this row to the others without increasing the
complexity of AA. The assumption of minimality on the complexity of AA

therefore forces all the entries of column i to be zero except l .i j
Let h denote number of rows in which exactly one element appears. The

argument of the preceding paragraph enables us to assume, after suitable
reordering of the X s and Y s, that the minimally complex parameterj i
matrix has the form

Id k = k 0 k = N y kŽ . Ž .Ž .
AA s ,ž /0 d y k = k BBŽ .Ž .

Ž . Ž .where Id k = k denotes a k = k identity matrix, 0 a = b denotes an
Ž . Ž .a = b matrix of zeroes, and BB is a d y k = N y k matrix such that

every row contains at least two nonzero entries.
Now an observation about BB: if two columns of BB have exactly one

nonzero entry, then they must occur in different rows. Indeed, consider the
d = 2 submatrix of AA determined by the two columns indexed by j and j1 2
with j , j ) k. Because AA has property MM , this d = 2 submatrix has rank1 2 2
2, which means that if the columns each have exactly one nonzero entry
Ž .which will necessarily be in BB , they must appear in different rows.
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This observation about BB ensures that each of the d y k rows of BB

contains at most one entry l appearing in a column which has all entriesi j
Ž . Ž . Ž .zero except this l . Therefore, at least N y k y d y k s N y di j

Ž . w Ž .xcolumns of BB contain two or more elements. That is, l BB s l AA is at2 2
least N y d.

Ž .We conclude, using 7.5.1 , that

NC I G l AA q l AA G N q N y d s 2 N y d ,Ž . Ž . Ž . Ž .1 2

and the proof is complete.

Theorem 7.1 follows in two cases.

Ž .7.6. COROLLARY. The Noether complexity of X m = n is mn. The1
Ž .Noether complexity of X m = n is 2mn y d. The Noether complexity of2

Ž . Ž .X m = n for t G 2 is at least 2mn y d.t

Proof. The computation Corollary 5.3 shows that the Noether complex-
ity is at most the asserted values for t s 1, 2. The lower bound follows
from Proposition 7.5, since parameter matrices for determinantal varieties
satisfy MM .t

We now turn to the large rank case, proving Theorem 7.1 for the case
t s m y 1. We first require a technical lemma, which restricts the parti-
tioning of systems of parameters of determinantal varieties in a strong way.

7.7. LEMMA. Let k and l be integers with 0 F k F m y t and 0 F l F
Ž w x. Ž Žn y t. If Y , . . . , Y are a system of parameters for R s K X r I m =1 d i j tq1

.. Ž .n , then at most t k q l of the parameters can be expressed as linear
combinations of the ¨ariables X lying in any k rows and l columns of X . Ini j i j
other words, if the ideal

J s X ; where i s i , . . . , i or j s j , . . . , jŽ .i j 1 k 1 l

Ž .contains a set of parameters, then the cardinality of that set is at most t k q l .
Ž If k s 0, the notation for J is correctly interpreted by dropping the phrase

.‘‘where i s i , . . . , i or.’’1 k

Proof. Let BB be the submatrix formed by omitting rows i , . . . , i and1 k
Ž .columns j , . . . , j from the matrix AA s X . With J as above, note that1 l i j

Ž . Ž . Ž . Ž .I AA ; J q I BB . If Y , . . . , Y ; J, then I AA q Y , . . . , Y ;tq1 tq1 1 r tq1 1 r
Ž .J q I BB . Consider the natural surjectiontq1

w xK X K X K BBi j i j¸ ( .
I AA q Y , . . . , Y J q I BB I BBŽ . Ž . Ž . Ž .tq1 1 r tq1 tq1
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The dimension of the source ring is at least as large as the dimension of
the target ring. Computing each, we see that

d y r s mt q nt y t 2 G m y k t q n y l t y t 2Ž . Ž .

Ž .and we conclude that r F t k q l .

7.8. COROLLARY. No system of parameters for the determinantal ring
Ž w x. Ž Ž ..R s K X r I m = n can contain t q 1 parameters from any onei j tq1

row or column. In particular, no system of parameters can contain more than
mt singletons.

Ž .Proof. This is the case l s 0, k s 1 or k s 0, l s 1 from Lemma 7.7.
Ž .There would be t q 1 ) t k q l parameters involving variables from just

Ž .one row or column . Furthermore, if there are more than mt parameters
Ž .of the form X singletons , then at least one of the m rows musti j

contribute more than t of them, a contradiction.

This can be used to derive some useful bounds on the Noether complex-
ity of determinantal rings, which yields the exact lower bound on the
Noether complexity in the maximal minor case.

Ž .7.9. PROPOSITION. The Noether complexity of X m = n is boundedt
below by

2nt q mt y 2 t 2 .

Proof. Let k denote the number of singletons appearing in a system of
Ž w x. Ž Ž ..parameters of minimal complexity for k X r I m = n . Then thei j tq1

number of elements which are not singletons is d y k and, therefore, the
Noether complexity is

NC I G k q 2 d y k s 2 d y k G 2 d y mt s 2nt y mt y 2 t 2 ,Ž . Ž .tq1

as needed.

Ž .7.10. COROLLARY. The Noether complexity of X m = n of m = nmy 1
matrices of non-full rank is

m y 1 2n y m q 2 s m y 1 mn y m y 2 d ,Ž . Ž . Ž . Ž . Ž .

Ž .where d denotes the dimension of X m = n .my 1

Ž Ž ..Proof. Note that the dimension in this case is d s mn y n y m y 1 .
The bound Proposition 7.9 gives us that

NC I m = n G m y 1 2n q m y 2 m y 1 ,Ž . Ž . Ž .Ž .Ž .m
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while Proposition 5.3 gives

NC I m = n F m y 1 mn y m y 2 mn y n y m q 1 .Ž . Ž . Ž . Ž . Ž .Ž .Ž .m

Comparing these bounds we get the desired result.

Combining Corollaries 7.10 and 7.6, the proof of Theorem 7.1 is com-
plete.

We point out a related result, describing the complexity of systems of
parameters achieved using a ‘‘greedy algorithm.’’

7.11. PROPOSITION. The complexity of any system of parameters for
w x Ž . Ž .k X rI X which contains mt singletons is tmn y t y 1 d. That is, anytq1

Ž .linear space of codimension d in P V , disjoint from X and contained in at
Ž .‘‘coordinate plane of codimension mt ’’ V mt of the ¨ariables X , must ha¨ei j

Ž .cobasis complexity tmn y d t y 1 .

w x Ž .Proof. Fix a system of parameters Y , . . . , Y for k X rI X and1 d tq1
consider the singletons Y s X in it. As noted in Corollary 7.8, there arek i j
at most mt singletons, no t q 1 of which are in a single row.

If there are exactly mt singletons, then there are t singletons in each
row. All other members of the system of parameters have complexity at
least m y t q 1: otherwise, a nonsingleton f of complexity at most m y t

Ž .together with the m y t t singletons involving the variables from the
Ž . Ž .same rows as f is a set of m y t t q 1 parameters involving only m y t

rows, violating Lemma 7.7. This makes the complexity of the system at
Ž .Ž . Ž .least mt q m y t q 1 d y mt s mnt y d t y 1 .

7.12. CAUTIONARY EXAMPLES. We now construct an example to show
that the systems of parameters constructed in Section 5 are not the
sparsest possible for all t, while laying another naive conjecture to rest.

Suppose that S and S are graded rings with fixed coordinates1 2
X , . . . , X and X X , . . . , X X , respectively. If Y , . . . , Y and Y X, . . . , Y X are1 n 1 n 1 d 1 d1 2 1 2

maximally sparse systems of parameters for S and S , respectively, then1 2
Y , . . . , Y , Y X, . . . , Y X is a system of parameters for S m S with respect1 d 1 d 1 K 21 2

to the coordinates X , . . . , X , X X , . . . , X X . The corresponding parameter1 n 1 n1 2

matrix is quite sparse, and has a nice symmetry that may be useful in
practice:

AA 0 d = nŽ .1 2
,ž /0 d = n = k BBŽ . .2 1

Ž .where 0 a = b denotes an a = b matrix of zeroes, AA is a maximally
sparse parameter matrix for S , and BB is a maximally sparse parameter1
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matrix for S . Howe¨er, this need not be a maximally sparse system of2
Ž . Ž . Ž .parameters for S m S . In particular, NC S m S / NC S q NC S in1 2 1 2 1 2

general.
We now give an explicit example of this phenomenon and use it to

Ž .construct a system of parameters for a determinantal variety X 9 = n ,4
where n G 9, which is sparser than the nice system of parameters con-
structed in Section 5.

7.13. EXAMPLE. Consider a 4 = 9 matrix of the form

1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0

.a b 0 c d 0 e f 0� 00 g h 0 j k m 0 p

One can verify that for generic values of indeterminates a, b, . . . , p, this
matrix has every 4-minor nonzero. Thus it is a parameter matrix for a ring

Ž .R s R 4, 9 described in Section 4. The Noether cobasis complexity for R
is 24, as we have seen.

w x w xOn the other hand, the ring R X s R m K X has Noether cobasis
complexity at most 24. To see this, we exhibit a system of parameters of
complexity 24:

U s X q X q X q X ,Ž .1 1 2 3

U s X y X q X q X ,Ž .2 4 5 6

U s X y X q X q X ,Ž .3 7 8 9

Y ,3

Y ,4

where Y is the linear form in X , . . . , X determined by the ith row of thei 1 9
above matrix. Indeed, the difference U y U is Y and the difference1 2 2
U y U is Y , so the ideal these generate contains all the Y . However,1 3 1 i
then because all the X are nilpotent modulo the Y , the radical of thei i
ideal generated by U , U , U , Y , Y contains X as well, and so1 2 3 3 4
� 4U , U , U , Y , Y form a system of parameters. On the other hand, the1 2 3 3 4
complexity of this system of parameters is 24, not 25.

We now show how to use this to create a system of parameters for a
determinantal ring of smaller complexity than would be predicted by
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Theorem 7.1. Consider a 9 = n matrix, with n 4 0, and let

9qny1

S s Rm k
ks1

as in the proof of Proposition 5.4 above, where

w xK variables in Dk
R (k all square-free degree 5 monomialsŽ .

Žis the ring studied in Section 4 or for k F t, or k G mn y 1 y t, it is the
.polynomial ring in k variables .

The product R m R has a system of parameters of complexity 24, by1 9
Example 7.13. The remaining R have systems of parameters as deter-k
mined in Section 4. The union of these elements is a system of parameters
for S. The total complexity of the union of these parameters is 36n y
Ž . Ž .3 4n q 20 y 1 s tmn y t y 1 d y 1, which is one less than expected.

Obviously, if n 4 9, we can make the complexity drop significantly by
regrouping several sets of variables in the ring S.
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