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Abstract:    Chromy’s algorithm is frequently used to design stratified simple random samples to meet several 
variance constraints on a Horvitz Thompson estimator.  We present a new geometrically-based algorithm for 
“nested” constraints.  This algorithm produces a list of points that we prove contains the optimal solution. 
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0.  Introduction 
 
Complex surveys often have complex requirements. For instance, the Census Bureau’s annual and monthly 
surveys of the retail, wholesale, and service trade areas need to produce reliable estimates in a large number of 
individual and aggregated kinds of business.    
 
Designing samples for such surveys is a nontrivial constrained optimization problem, and iterative methods 
based on the Karush-Kuhn-Tucker conditions are believed to determine a solution.  For instance, Chromy’s 
algorithm is frequently used to determine sample sizes in a stratified design that meet multiple coefficient of 
variation (cv) constraints. [B],[C] 
  
However, the constraints often have some additional structure.  For example, those for the above Census 
Bureau surveys have a “nested” structure, in that certain “detail” kinds of business are constrained, and then 
various aggregations of these detail are constrained.  One might expect to be able to determine a solution more 
easily in this simpler scenario, and prove that it works.   
 
Members of Census Bureau developed an alternative algorithm that is easier to program and appears to 
produce an approximately optimal solution. [K1],[K2]  The Census Bureau has used their algorithm to design 
samples for various economic surveys, including the Monthly Retail Trade Survey.   
 
In this paper, we present a new procedure, inspired by the Census Bureau algorithm, and prove that it solves 
the problem.  That is, we present and prove an algorithm that finds optimal sample sizes meeting “nested” 
univariate cv constraints of a Horvitz-Thompson estimator under stratified simple random sampling.   Our 
algorithm takes a geometric approach to the problem, instead of the analytic one taken by Chromy and Bethel. 
 We produce a list of points related to the faces of the constraint region, among which is the optimal point.  
 
 

1.  The Problem and its Transformation 
 
Example 1 
Suppose, for example, that you have a frame with four strata and a variable of interest Y. Suppose that the 
stratum sizes are N1:=10, N2:=20, N3:=30, and N4:=10, the totals of Y in the strata areY1:=30, Y2:=90, Y3:=90, 
and Y4:=50, and the standard deviations of Y in the strata are σ1:=1, σ2:=2, σ3:=1, σ4:=2. That is, stratum 1 
consists of 10 frame units.  The total of Y over these 10 units is 30, and the standard deviation of Y among 
these 10 units is 1.   Suppose that (because e.g. you are designing a sample to estimate totals of a variable that 
you expect to be strongly correlated with Y) you wish to design a stratified simple random sample to produce 
the following estimates with the following degrees of accuracy 
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Quantity to estimate Upper bound on the coefficient of variation (cv) 
Y1 +Y2+Y3 +Y4 0.5% 
Y1+Y2 1% 
Y3+Y4 1% 

 
You plan to use a Horvitz Thompson estimator (e.g. you will use the sample weight 10/x1 in stratum 1, if you 
choose x1 members from stratum 1), and want to choose at least two members from each stratum.  (You can 
think of these bounds as arising from variance constraints on the four stratum estimates.) Your goal is to 
determine the stratum sample sizes x1, x2, x3, and x4 that meet these constraints with x1+x2 +x3 +x4 minimal. 
The corresponding variance constraints can be expressed as  

 

100/x1 + 1600/x2 + 900/x3 + 400/x4  ≤ 161.69  
100/x1 + 1600/x2    ≤   91.44  

     900/x3 + 400/x4    ≤   71.96  
 

and you have the additional constraints 2 ≤ x1 ≤ 10,  2 ≤ x2 ≤ 20, 2 ≤ x3 ≤ 30, and 2 ≤ x4 ≤ 10.  You wish to 
determine the sample sizes x1, x2, x3, and x4 that satisfy these constraints with x1+x2 +x3 +x4 minimal.  We 
will return to this example to illustrate our result. 
  
In general, suppose you have N strata and variance constraints varA on a variable of interest Y on various 
collections A of strata, and you want to determine the sample sizes for which the Horvitz Thompson 
estimator of Y under stratified simple random sampling satisfies the variance constraints with minimal total 
sample size.  Setting  
 

Ni := stratum size for stratum i, for i=1,..., N 
σi := standard deviation of Y in stratum i, for i=1,.., N 
ai := (Ni σi)2 for i=1, ..., N 
C:= the collections of strata on which you’re specifying reliability constraints 

cA := varA + 
2

iAi isN∑∈
 for A∈C 

S(N) := {A ⊆{1,..., N}: |A| > 1} 
 

the problem of determining the stratum sample sizes can be stated as follows. 
 
The Problem 
Let N be a positive integer, and let a1,..., aN, c1,..., cN, and C1,..., CN be positive real numbers.  Let C⊆S(N), 
and let cA, for A∈C,  be positive real numbers.  Minimize x1 + ... + xN subject to   
 

AiAi i c/xa ≤∑ ∈  for all A ∈ C, and ci ≤ xi ≤ Ci for all 1≤ i ≤ N. 
 

For instance, in Example 1, C = {{1,2},{3,4},{1,2,3,4}}, c{1,2,3,4}=161.69, c{1,2} = 91.44, c{3,4}= 71.96, and 
S(N) consists of the 11 subsets of {1,2,3,4} that contain at least two members. 
  
Here, we are determining real-valued sample sizes.  Rounding the real-valued sample sizes up produces 
integer-valued sample sizes that satisfy the variance constraints and approximately minimize the total sample 
size. We do not address the problem of which stratum sample sizes to round up and which to round down for 
optimality. 
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Example 1 is a small instance of this problem.  The sample design for the Monthly Retail Trade Survey uses 
approximately N=800 strata and approximately |C|=100 reliability constraints.  Applying the transformation xi 
-> ai /xi for i=1, ..., N, we obtain an equivalent problem. 
 
The Transformed Problem  
Let N be a positive integer, and let a1,..., aN, c1,..., cN, and C1,..., CN be positive real numbers. Let C⊆S(N), 
and let cA, for A∈C, be positive real numbers.  Minimize a1/x1 + ... + aN/xN  subject to 

 

     Acx
Ai i ≤∑ ∈

  for all A ∈ C, and ci ≤ xi ≤ Ci for all 1≤ i ≤ N. 
 

That is, a point p=(p1,..., pN) satisfies the Problem if and only if the point q =(q1,..., qN) defined by qi := ai/pi 
for i=1,..., N,  satisfies the Transformed Problem with variable constraints ai/Ci ≤ xi ≤ ai/c i for all i=1,...,N. 
 
In Example 1, the Transformed Problem is to minimize 100/x1 + 1600/x2 + 900/x3 + 400/x4 subject to  
x1+x2+x3+x4 ≤ 161.69, x1+x2 ≤ 91.44, x3+x4 ≤ 71.96, 10 ≤ x1 ≤ 50,  80 ≤ x2 ≤ 800, 30 ≤ x3 ≤ 450, and 40 ≤ 
x4 ≤ 200.   
 
Note that the Transformed Problem has a solution when the constraint region is nonempty, since the objective 
function is continuous and the constraint region is compact.  Furthermore, the Transformed Problem has a 
unique solution p, since the objective function is strictly convex and the constraint region is convex.  
Moreover the solution p is on the boundary of the constraint region, so it satisfies a subcollection of the 
constraints with equality.  These statements hold for any collection of mutually satisfiable constraints C. Our 
main result (Theorem 1) describes the solution to the Transformed Problem in more detail for nested 
collections C.  
 
Defn A collection C of sets is nested if C can be partitioned into subcollections C(0), ..., C(K) for some K ≥ 0 
such that the members of each C(k) are pairwise disjoint, and for  k < K, each member of C(k+1) is the union 
of two or more members of C(k). The members of C(k) are called the level k sets, and we write Lev(A):=k 
for all A∈C(k). 
 
For instance the collection {{1,2}, {3}, {1,2,3}} is nested with C(0) = {{1,2}, {3}} and C(1) = {{1,2,3}}. 
We shall see in Section 3 that the decomposition of C into C(0), ..., C(K) is unique and so members of C 
can’t be construed to have different levels. 
 
Our solution of the Transformed Problem narrows down the search for a minimum to a relatively easily 
computed list of points that contains the minimum.  We present our solution in Section 2.  Section 3 contains 
preliminary results, and Section 4 contains the proof.  
 
Notation 
Throughout this paper, N denotes a positive integer, and a1,..., aN, c1,..., cN, and C1,..., CN are positive real 
numbers. Also S(N) := {A ⊆{1,..., N}: |A| > 1}, and C ⊆ S(N) is nested, and is partitioned into subcollections 
C(0), ..., C(K)  as in the definition of a nested collection. Also cA, for A∈C, are positive real numbers. We 
define V:={{1},…,{N}}, the singleton sets, and for all 1 ≤ i ≤ N, c{i}∈{c i ,Ci}.  We define the constraint 
region defined by C to be  
 

{ } { }Ni1:CxcCA:cx:CR(C) iiiAAi i ≤≤≤≤∩∈≤∑= ∈  
 

For any subcollection D of S(N) ∪ V, we define the equality constraint region defined by D to be  
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{ }DA:cx:EQ(D) AAi i ∈=∑= ∈  
 

so CR(C) and EQ(D) are subsets of RN. Note that CR(C) and EQ(D) depend on the cA and that EQ(D) can 
involve the c{i} for singletons {i}. 
 

2.  Statement of the Algorithm 
 

Defn A collection D ⊆ S(N) ∪ V is complete if for all 1 ≤ k ≤ N , there exists A∈D such that k∈A.  
 
Defn Let D be a subcollection of C∪V, and let A∈D.  Define Max(A,D) := {B∈D: B is a maximal proper 
subset of A}. 
 
Here we mean that B is maximal with respect to containment.  We call the members of Max(A,D) the 
maximal subsets of A (in D).  E.g. for N:=4 and D:={{1,2},{3}, {1,2,3,4}}, Max({1,2,3,4},D) = 
{{1,2},{3}}.  For D:=C ∪ V, Max(A,D) consists of the level Lev(A)-1 sets in the decomposition of A into 
level Lev(A)-1 sets. We shall see for a complete subcollection D of C ∪ V, the nonempty sets A \  
∪Max(A,D), for A ∈ D, partition {1,...,N}.  This needn’t be true when C isn’t nested, e.g. for 
C=D={{2},{3},{1,2},{1,3}}. 
 
Example:  For N:=4 and D:={{1,2},{3}, {1,2,3,4}}, {1,2} \ ∪Max({1,2},D) = {1,2}, {3} \ ∪Max({3},D) = 
{3}, and {1,2,3,4} \ ∪Max({1,2,3,4},D) = {4}. 
 
Defn  Let D be a subcollection of C∪V.  We define D to be union-free if there do not exist n and A, A1,…, An 
∈ D with A = A1 ∪… ∪ An. 
 
For example, {{1},{1,2,3}} is union-free, while {{1},{2,3},{1,2,3}} is not.  Note that every complete 
collection D has a union-free complete subcollection E. (You can create E by iteratively omitting sets A from 
D that are unions of other sets in D.)  We now state the main theorem, which presents the algorithm for 
solving the Transformed Problem for nested constraints.  The algorithm presents a list containing the 
minimum. 
 
Theorem 1 Let C ⊆ {A ⊆{1,..., N}: |A| > 1} be nested, and suppose  

{ } { }Ni1:CxcCA:cx:CR(C) iiiAAi i ≤≤≤≤∩∈≤∑= ∈  

is nonempty.  Let p=(p1,…,pN)∈RN be the unique minimum of ∑ =
N

1i ii xa on CR(C).  Then there are a union-
free complete subcollection D ⊆ C∪V and constants c{i}∈{c i ,Ci} for all singletons {i}∈D, such that for all 
A∈D and for each i ∈ A \  ∪Max(A,D), 
 

i

D)Max(A,\Aj j

D)Max(A,B BA

i a
a

cc
p

∑
∑

∪∈

∈
−

=  

 
As we will see this means that the constrained minimum is obtained by hierarchically satisfying a complete 
subcollection of the constraints with equality. 
 
Example:  The minimum of 1/x1 + 1/x2  subject to 1/2 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 4 and x1+x2 ≤ 4 occurs at (1,3).  Here 
D={{1},{1,2}}. 
 
Example:  The minimum of 1/x1 + 1/x2 + 1/x3  subject to x3 ≤ 5 ,  x1+x2 ≤ 2, and  x1+x2+x3 ≤ 6 occurs at 
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(1,1,4).  Here D = {{1,2}, {1,2,3}}. 
 
Theorem 1 solves the Transformed Problem.  The (original) Problem is solved by the point qi := ai / pi, for 1 
≤ i ≤ N.  We note that since the bounds on redundant constraints can be made unachievable without changing 
the polytope, we may assume that the D in Theorem 1 consists of irredundant constraints.  
 
Example 1:  Five of these constraints are redundant.  There are 27 union-free complete subcollections D of 
irredundant constraints, associated to each of which is a candidate solution pD from the conclusion of 
Theorem 1.  For example, D={{1},{4},{1,2},{1,2,3,4}} is a complete union-free subcollection with 
associated point pD=(10, 81.44, 30.25, 40).  This point is feasible, i.e. lies in the constraint region, and has 
objective function value 69.3984.  Among these 27 points, the feasible point with minimal objective function is 
the point (10.4225, 80, 31.2675, 40), with function value 68.3785.  This point arises from the subcollection 
{{2},{4},{1,2,3,4}}.  Corresponding to this solution is the solution to the (original) Problem (9.5946, 20, 
28.7839, 10).  We would take stratum sample sizes (10, 20, 29, 10)  (or play around with different 
roundings).   
 
We note how Theorem 1 could be implemented and contrast it to Chromy’s algorithm. To implement our 
algorithm, we could write a computer program to remove as many redundant constraints as possible, 
compute all complete union-free subcollections of irredundant constraints and their corresponding points, and 
determine the feasible point among these with lowest objective function value.  (The algorithm will produce a 
feasible point if the constraint region is nonempty.)  In contrast, Chromy’s algorithm takes with a user-
specified level of tolerance ε and either doesn’t converge or iterates eventually toward a solution within ε.  It 
won’t in general produce the exact solution, might not converge, and might take longer or shorter to produce 
a point within ε tolerance depending on the size of ε and the choice of initial point.  
 

3.  Preliminaries 
 
Prop 1 Let 0 ≤ r < s ≤ Κ and let A∈C(s).  Then there exists a positive integer t and unique A1,..., At ∈ C(r) 
such that A = A1 ∪ ... ∪ At.   
 
Proof Existence is obvious.  Suppose A1 ∪ ... ∪ At = B1 ∪ ... ∪ Bu for some B1,..., Bu∈C(k).  Since distinct 
level r sets are pairwise disjoint, for all 1 ≤ i ≤ t, there exists 1 ≤ j ≤r such that Ai = Bj. o 
 
Cor C(0),…, C(K) are pairwise disjoint. 
 
Cor If A,B∈C and B ⊆ A, then Lev(B) ≤ Lev(A), and B is one of the sets in the decomposition of A into level 
Lev(B) sets. 
 
Proof Suppose Lev(B) > Lev(A).  Decomposing B into distinct level Lev(A) sets B1,..., Bt, since B ⊆ A, we 
see that t=1 and A=B1 =B. Contradiction. Now decompose A into distinct level Lev(B) sets A1,..., At.  Since B 
⊆ A, we see that t=1 and B=Ai for some 1 ≤i ≤ t.  o 
 
Prop 2 C(0) = {A∈C: Max(A,C) = ∅ } and for 0 < k ≤ K,  C(k) = {A∈C \ (C(0) ∪...∪ C(k-1)) : Max(A, C \ 
(C(0) ∪...∪ C(k-1)) = ∅ }. 
 
Proof Let D(k):= {A∈C \ (C(0) ∪...∪ C(k-1)): Max(A, C \ (C(0) ∪...∪ C(k-1)) = ∅ } for 0 ≤ k ≤ K. We are 
to show C(k)=D(k) for all k.  Note that C(k) ⊆ D(k) follows from the corollaries. Fix 0 ≤ k ≤ K. 
 
Let A∈D(k). Suppose A∈C(j) for some j > k.  Decomposing A into distinct level k sets A1,..., At, since 
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Max(A, C \ (C(0) ∪...∪ C(k-1)) = ∅, we see that t=1 and A=A1∈C(k). o 
 
Defn A collection of sets D is weakly nested if for all A,B∈D, A∩B= ∅, B⊆A, or A⊆B. 
 
That is, every pair of members of D is disjoint or satisfies a containment relation. Every subcollection of a 
nested collection is weakly nested.  In particular, the members of Max(A,D) for A in a complete subcollection 
D of C are pairwise disjoint.  However, for example, {{1},{1,2}} is weakly nested but not nested.  Note that 
in the next proposition, some of the members A \ ∪Max(A,D) of this partition might be empty, e.g. for 
D={{1},{2},{1,2}}. 
 
Prop 3 Let D be a complete subcollection of C∪V. Then the sets A \ ∪Max(A,D) for A∈D partition {1,...,N}. 
 
Proof Let 1 ≤ i ≤ N.  Let A∈D be minimal with respect to containment such that A contains i. Then i ∈ A \ 
∪Max(A,D).  Suppose i ∈ T \ ∪Max(T,D) for some T ∈ D.  Then A and T meet, but we can’t have A ⊂ T 
or T ⊂ A, so A=T.o 
  
We next describe in detail the solution to one equality constraint.  
 
Prop 4 Let c be a nonzero real number. The unique minimum of ∑= =

N
1i iiN1 xa:)x,...,f(x  subject to 

cxN
1i i =∑ = and x1>0,…, xN>0 occurs at the point 

N1 a...a
c:p

++
= ( )N1 a,...,a .  This is the point of the 

first octant that satisfies the equations 2
N

N
2
1

1

x
a...

x
a ==  and cx i =∑ .  Furthermore 

c
)a...a(

f(p)
2

N1 ++
= . 

 
Proof  Straightforward. o 
 
For the next proposition, we adopt the standard convention that the empty sum is zero.  
 
Prop 5  Let D be a complete subcollection of C∪V, and let c{i}∈{c i ,Ci} for all singletons {i}∈D.  Then  
 

{ }DA:ccxEQ(D)
D)Max(A,B BAD)Max(A,\Ai i ∈−== ∑∑ ∈∪∈

. 

In particular, EQ(D)=∅ if and only if there exists A∈D with A \ ∪Max(A,D)= ∅ and ∑ ∈
≠

D)Max(A,B BA cc . 

 
That is, equality constraints on a complete subcollection can be rewritten as equality constraints in disjoint 
variables.  E.g. {x1=c1, x2=C2, x1+x2+x3=c{1,2,3}}={x1=c1, x2=C2, x3=c{1,2,3}-c1-C2}. Note that we need to 
include the empty sums in Proposition 5.  For example, let N:=2, C:={{1,2}}, and D:= C ∪V.  If c{1,2} = 
c{1}+c{2} then the set in Proposition 5 consists of the point (c{1}, c{2}), while if c{1,2} ≠ c{1}+c{2}, then the set in 
Proposition 5 is the empty set.  The proposition would have failed if we had excluded the empty sum in the 
latter case. 
 
Proof We first note that for all q∈RN and A∈D, { }∑ ∑∑ ∈ ∈∪∈

=
D)Max(A,B Bi iD)Max(A,i i qq . 

since the members of Max(A,D) are pairwise disjoint.  Let q∈RN and let A∈D. Suppose TTi i cq =∑ ∈
for all 

T∈D. Then =q
D)Max(A,\Ai i∑ ∪∈

=∑ ∑∑ ∈ ∈∈ D)Max(A,B Bi iAi i q- q ∑ ∈
−

D)Max(A,B BA cc . 

Suppose, on the other hand, ∑∑ ∈∪∈
−=

D)Max(T,B BTD)Max(T,\Ti i ccq for all T∈D.  Then  
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∑ ∑∑∑ ∈ ∈∪∈∈
+=

D)Max(A,B Bi iD)Max(A,\Ai iAi i qqq .  By induction on Lev(A), BBi i cq =∑ ∈
for all 

B∈Max(A,D). So AD)Max(A,B BD)Max(A,B BAAi i ccccq =+−= ∑∑∑ ∈∈∈
.o 

 
Notation:  For a complete subcollection D of C∪V and constants c{i}∈{c i ,Ci} for all singletons {i}∈ D, let 
pD denote the point defined by D in Theorem 1. That is  

i

D)Max(A,\Aj j

D)Max(A,B BA

i a
a

cc
pD

∑
∑

∪∈

∈
−

=   for all i ∈ A \ ∪Max(A,D) with A∈D. 

 

Note that some coordinates of pD might be zero or negative.  
 
Cor  Let D be a complete subcollection D of C∪V such that EQ(D)≠∅, and let c{i}∈{c i ,Ci} for all singletons 
{i}∈D.  Suppose that all coordinates of pD are nonzero. Then pD minimizes Σ ai/xi on EQ(D). 
 
So pD is on the boundary of CR(C) and, if its coordinates are nonzero, is determined by hierarchically solving 
a subset of the constraints with equality and minimizing the objective function on each of the corresponding 
equality constraints in disjoint variables. 
 
Proof  By Proposition 5, { } { }DA:ccxDA:cx

D)Max(A,B BAD)Max(A,\Ai iAAi i ∈−==∈= ∑∑∑ ∈∪∈∈
 

Since the latter constraints are in disjoint variables, the result follows from Proposition 4. o 
 
Defn Let D be a subcollection of C∪V.  We define the core of D to be the set Core(D):={A∈D: 
A≠∪Max(A,D)}. 
  

Core(D) is the union-free subcollection we get by throwing out unions. For D:={{1},{2},{1,2}}, Core(D) = 
{{1},{2}}, while {{1,2}} is another union-free subcollection.  If D is complete, so is its core, and D and 
Core(D) contain the same singletons.  Core(D) defines the same equality constraints as D, while an arbitrary 
union-free subcollection needn’t.  
 
Prop 6  Let D be a complete subcollection of C∪V such that EQ(D)≠∅, and let c{i}∈{c i ,Ci} for all singletons 
{i}∈D.  Then EQ(D)= EQ(Core(D)). 
 
That is, nontrivial equality constraints on a complete subcollection can be rewritten as equality constraints on 
their union-free cores. For example, D:={{1},{2},{1,2}} and E:={{1},{2}} define the same equality 
constraints if those defined by D have a solution (but they don’t if those defined by D have no solution).  
 
Proof   For k ≥ 0, define CD(k):= Core(D) ∪{A∈D: Lev(A) ≤ k}.  We prove by induction on k that 
EQ(Core(D)) = EQ(CD(k)).  For k=0, CD(0) = Core(D).  Suppose the claim is true for some k ≥ 0.  Let A ∈ 
CD(k+1) \ CD(k), and let p∈EQ(Core(D)).  Then A = ∪Max(A,D), and, since EQ(D)≠∅,  

∑ ∈
=

D)Max(A,B BA cc .  By induction, p∈EQ(E(k)) , so BBi i cp =∑∈
for all B∈Max(A,D), so 

∑∑ ∈∈
==

D)A,(MaxB ABAi i ccp . o 

 
Cor  Let D be a complete subcollection of C∪V such that EQ(D)≠∅, let c{i}∈{c i ,Ci} for all singletons 
{i}∈D, and let E:=Core(D).  Then pD = pE. 
 
Proof By Proposition 6, EQ(D) = EQ(Core(D)). By the Corollary to Proposition 5, pD is the minimum of f on 
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EQ(D) and pE is the minimum of f on EQ(Core(D)), so we are done since the constrained minima are unique. 
o 
 
Next, we specify an algorithm to generate all complete union-free subcollections D of C∪V.  To generate 
those with, say k singletons, start with a collection D of k singletons.  If D is not complete (i.e. if k < N), add 
to D a nonsingleton member A of C that contains an integer in {1,…,N} \  ∪D, i.e. that contains some “new” 
integer.  If the resulting collection D is not complete, add to D a member B of C that contains a member of 
the new {1,…,N} \ ∪D. Continue until the resulting collection D is complete.  
 
Such a collection D is union-free since each set we added to D contains a new integer.  Now fix an arbitrary 
union-free complete subcollection D, with, say, k singletons and n nonsingleton sets.  Let A1,…, An be its 
nonsingleton sets, listed in order of nondecreasing level.  The D is the result of the algorithm that starts with 
the k singletons and adds the sets A1,…, An in order.  (Suppose that for some k, Ak+1 ⊆ S ∪ A1 ∪ … ∪Ak, 
where S is the union of the singletons in D.  Then by weak nesting and our ordering of the Ai’s, each of 
A1,…, Ak that meets Ak+1 is contained in Ak+1.  So Ak+1 is the union of the singletons from S ∩ Ak+1  and the 
A1,…, Ak that meet Ak+1.) The next proposition improves on the earlier assertion that the constrained 
minimum is on the boundary of the constraint region.  

 

Prop 7 Let p minimize Σ ai /xi on CR(C). There are a complete subcollection D of C∪V and constants c{i}:=Ci 
for all singletons {i}∈D, such that p∈EQ(D).  
 
Proof Suppose not.  Let 1 ≤ i ≤ N be such that ci ≤ pi < Ci and AAi i cp <∑ ∈  for all A∈C such that A contains 
i.  We may assume i=1.  Since all coordinates of the gradient of f are negative at p, the directional derivative 
of f in the unit direction u:=(1,0,...,0) is negative at p.  Then f(p+tu) < f(p) for all sufficiently small t > 0, and 
we may choose t small enough so that p+tu∈CR(C). Contradiction. o 
 
Example  For f(x1, x2):= 1/x1+1/x2  on CR(C):={x1+x2≤2, 3/2≤x1≤2, ½≤x2≤2}={(3/2,1/2)}, p=(3/2,1/2) 
∈ EQ(D) for D={{1,2}}. However, p≠pD for this D, but rather for D={{1},{2}}, {{1},{1,2}}, or 
{{2},{1,2}} with c{1}:=3/2 and c{2}:=1/2. 
 
Prop 8 Let J ⊆V, and I:= ∪J.  Let D be a complete subcollection of C∪V.  Suppose that the nonempty sets 
A\I for A∈D are distinct.  Let F:={A\I: A∈D, A\I≠∅}, and let A∈D be such that A\I≠∅. Then  

(1) {B∈Max(A,D): B\I ≠∅} = {B∈D : B\I ∈ Max(A\I,F)}. 
Suppose also that {B∈D: B\I= ∅} = {{i}: i ∈I}. Then  

(2) {B∈Max(A,D): B\I=∅} = {{i}: i ∈ (A∩I) \ ∪{B∈Max(A,D): B\I ≠∅}}, and  
(3) A \ ∪Max(A,D) = (A\I) \ ∪Max(A\I, F). 

 
Proof Note that for all T∈F, there is a unique B∈D such that T=B\I. Note also that by weak nesting, for all 
B∈D such that B\I≠∅, Α⊇Β if and only if A\I ⊇ B\I. (For the direction ⇐, note that if A⊆B, then A\I=B\I 
implies A=B by hypothesis.) Part (1) now follows easily.  
 
(2): Let B∈Max(A,D) with B\I=∅. By hypothesis, B={i} for some  i∈A∩I.  Suppose i∈T for some 
T∈Max(A,D) with T\I ≠∅.  Then {i}⊆T, so by maximality {i}=T, contradicting T\I ≠∅.  
 
Now let i ∈ (A∩I) \ ∪{B∈Max(A,D): B\I ≠∅} and write {i}⊆T⊆A for some T∈Μax(A,D).  Then T\I=∅, so 
|T|=1, so {i}=T∈Μax(A,D). 
 
(3):  By (1) and (2),  
   ∪Max(A,D)  = (∪{B∈Max(A,D): B\I ≠∅})  ∪  ((A∩I) \ ∪{B∈Max(A,D): B\I ≠∅})  
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= (∪{B∈Max(A,D): B\I ≠∅})  ∪  (A∩I)  =  (∪{B∈D: B\I∈Max(A\I,F)}) ∪ (A∩I)  
= (∪{B\I: B∈D, B\I∈Max(A\I,F)})  ∪  (A∩I)  =  (∪Max(A\I,F)) ∪ (A∩I).o 

 
4.  Proof of the Algorithm 

 
We now prove the main theorem, which solves the Transformed (and the original) Problem for nested 
constraints.  By the Corollary to Proposition 5, Theorem 1 says that the constrained minimum is determined 
by hierarchically solving a subset of the constraints with equality and minimizing the objective function on 
each of the corresponding equality constraints in disjoint variables. 
 
Theorem 1 Let C ⊆ {A ⊆{1,..., N}: |A| > 1} be nested, and suppose  

 

{ } { }Ni1:CxcCA:cx:CR(C) iiiAAi i ≤≤≤≤∩∈≤∑= ∈  

is nonempty.  Let p=(p1,…,pN)∈RN be the unique minimum of ∑= =
N

1i iiN1 xa:)x,...,f(x on CR(C).  Then 

there are a union-free complete subcollection D ⊆ C∪V and constants c{i}∈{c i ,Ci} for all singletons {i}∈D, 
such that for all A∈D and for each i ∈ A \  ∪Max(A,D), 

 

i

D)Max(A,\Aj j

D)Max(A,B BA

i a
a

cc
p

∑
∑

∪∈

∈
−

=  

 
Proof  We prove this by induction on N. The case N=1 is obvious. 
 
Suppose p satisfies some of the variable constraints with equality.  Let J:={{i}: pi∈{c i, Ci}}, and let I:= ∪J. 
Define E:={A\I: A∈C, A\I≠∅},  

{ }CA I,\AB:pcmin:d IAi iAB ∈=∑−= ∩∈  for all B∈E 

and q∈RN-|I| by qi := pi  for i∉I.  Then E is nested and q minimizes ∑∉Ii ii x/a on the constraint region 
{ } { }Ii:CxcEB:dx:CR(E) iiiBBi i ∉≤≤∩∈≤∑= ∈ .  By induction, there is a complete subcollection F of 

E ∪{{i}: i ∉ I} and constants d{j}∈{c j ,Cj} for all j∉I such that for all A∈F, and for each j ∈ A \ ∪Max(A,F), 

j

F)Max(A,\Ak k

F)Max(A,B BA

j a
a

dd
p

∑
∑

∪∈

∈
−

=  

 

Let D:={A∈C: A\I∈F, ∑−= ∩∈ IAi iAI\A pcd } ∪ {{i}: i∈I}, and set c{i}:= pi ∈ {c i, Ci} for i∈I.  Throw out 
from D any sets A with duplicate A\I (which would require duplicate ∑− ∩∈ IAi iA pc ) so that for each B∈F 
there is a unique A∈D such that B=A\I.  D is complete since F is.  We claim that p=pD. Note that by our 
choice of c{i}’s, pi =pDi for all i∈I.  
 
Fix j∉I, and let A∈D be such that j ∈ A \ ∪Max(A,D).  Then A\I is nonempty and so by Proposition 8, (A\I) \ 
∪Max(A\I, F) = A \ ∪Max(A,D).  So 
 

∑ ∑∑∑ ≠∈
∩∈

∩∈∈∈
−−−=−

φI\BD),Max(A,B
IBi

iBIAi iAF)I,\Max(AI\BD,B I\BI\A )p(cpcdd  

   ∑∑ ≠∈∪∩∈≠∈
−−=

}I\:BD)Max(A,{B\I)(Ai iI\BD),Max(A,B BA pcc
φφ

 

 

By part (3) of Proposition 8, this is equal to ∑−
D)Max(A, BA cc , and so pj=pDj, as desired. 
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So we may assume that for all 1 ≤ i ≤ N, ci<pi<Ci.  Let D be a complete subcollection of C such that 
p∈EQ(D) and suppose pi ≠pDi for some i ∈ A \ ∪Max(A,D) with A∈D.  By Proposition 5, | A \ ∪Max(A,D) | 
> 1.  By propositions 4 and 5, there exist i,j∈A such that 2

jj
2
ii /pa/pa > . The directional derivative of f in the 

direction v defined by  








=−
=

=
otherwise        0, 

jk  if   1,
ik if     1,

:vk  

is negative at p, so for all sufficiently small t>0, f(p+tv) < f(p), and so p+tv is not in the constraint region.  So 
pi=Ci  or pj=c j. Contradiction.  Finally, we may assume D is union-free by replacing it with its core and 
applying the corollary to Proposition 6.o 
 
Remark on the proof:  From Proposition 7, we know that the constrained minimum p is in EQ(D) for some 
complete subcollection D.  If we could prove more easily that pD was in CR(C), we could use an easier 
argument in the proof of Theorem 1.  However, as we know from Example 1, many D produce unfeasible 
points pD. 
 
Conjecture Suppose that for all complete union-free subcollections D of C∪V that contain no singletons, pD1 
< c1 . Let E be a complete subcollection for which pE is the constrained minimum in Theorem 1.  Then E 
contains the singleton {1}.  
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