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Abstract: Chromy’salgorithm isfrequently used to design stratified simple random samples to meet several
variance constraints on a Horvitz Thompson estimator. We present a new geometrically-based algorithm for
“nested” constraints. Thisalgorithm produces alist of pointsthat we prove contains the optimal solution.
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0. Introduction

Complex surveys often have complex requirements. For instance, the Census Bureau's annual and monthly
surveys of the retail, wholesale, and service trade areas need to produce reliable estimates in a large number of
individual and aggregated kinds of business.

Designing samples for such surveysis a nontrivial constrained optimization problem, and iterative methods
based on the Karush-Kuhn-Tucker conditions are believed to determine a solution. For instance, Chromy’s
algorithm is frequently used to determine sample sizes in a stratified design that meet multiple coefficient of
variation (cv) constraints. [B],[C]

However, the constraints often have some additional structure. For example, those for the above Census
Bureau surveys have a “nested” structure, in that certain “detail” kinds of business are constrained, and then
various aggregations of these detail are constrained. One might expect to be able to determine a solution more
easily in this ssmpler scenario, and prove that it works.

Members of Census Bureau developed an alternative algorithm that is easier to program and appears to
produce an approximately optimal solution. [K1],[K2] The Census Bureau has used their algorithm to design
samples for various economic surveys, including the Monthly Retail Trade Survey.

In this paper, we present a new procedure, inspired by the Census Bureau algorithm, and prove that it solves
the problem. That is, we present and prove an algorithm that finds optimal sample sizes meeting “ nested”
univariate cv constraints of a Horvitz-Thompson estimator under stratified simple random sampling. Our
algorithm takes a geometric approach to the problem, instead of the analytic one taken by Chromy and Bethel.
We produce alist of points related to the faces of the constraint region, among which is the optimal point.

1. TheProblem and its Transfor mation

Example 1
Suppose, for example, that you have a frame with four strata and a variable of interest Y. Suppose that the

stratum sizes are N;:=10, N,:=20, N3:=30, and N,:=10, the totals of Y in the strata areY:=30, Y,:=90, Y3:=90,
and Y,:=50, and the standard deviations of Y inthe strataare s1:=1, $,:=2, s3:=1, S4:=2. That is, stratum 1
consists of 10 frame units. Thetotal of Y over these 10 unitsis 30, and the standard deviation of Y among
these 10 unitsis 1. Suppose that (because e.g. you are designing a sample to estimate totals of a variable that
you expect to be strongly correlated with Y) you wish to design a stratified simple random sample to produce
the following estimates with the following degrees of accuracy



Quantity to estimate Upper bound on the coefficient of variation (cv)
Y1 +Yo+Y3+Y, 0.5%

Yi+Y, 1%

Y3+Y, 1%

You plan to use a Horvitz Thompson estimator (e.g. you will use the sample weight 10/x; in stratum 1, if you
choose x; members from stratum 1), and want to choose at least two members from each stratum. (Y ou can
think of these bounds as arising from variance constraints on the four stratum estimates.) Y our goa isto
determine the stratum sample sizes X;, X», X3, and X4 that meet these constraints with x;+X, +X3 +X4 minimal.
The corresponding variance constraints can be expressed as

100/x; + 1600/x; + 900/x3 + 400/, £ 161.69
100/x; + 1600/x, £ 9144
900/x3 + 400/x4 £ 7196

and you have the additional constraints 2 £ x; £ 10, 2 £ x,£ 20, 2 £ x3 £ 30, and 2 £ x4 £ 10. You wish to
determine the sample sizes x;, X,, X3, and X, that satisfy these constraints with x;+x, +x3+x4 minimal. We
will return to this example to illustrate our result.

In general, suppose you have N strata and variance constraints var, on avariable of interest Y on various
collections A of strata, and you want to determine the sample sizes for which the Horvitz Thompson
estimator of Y under stratified simple random sampling satisfies the variance constraints with minimal total
sample size. Setting

N; := stratum size for stratum i, for i=1,..., N

S; := standard deviation of Y in stratum i, for i=1,.., N

a:=(N;s)?*fori=1, .., N

C:=the collections of strata on which you're specifying reliability constraints
Cai=Vara + é.“Nisi2 for Al C

S(N):={A 1 {1,.., N}:|A|>1}

the problem of determining the stratum sample sizes can be stated as follows.

The Problem
Let N be a positive integer, and let a,,..., &, Cy,..., Cx, and Cy,..., Cy be positive real numbers. Let CI S(N),
and let ca, for Al C, be positive red numbers. Minimize x, + ... + Xy subject to

&iaalx, £c, fordlAT C,andc £x £C foral I£i£N.

For instance, in Example 1, C = {{1,2} {3,4}.{1,2,3,4}}, C{1234=161.69, C{12 = 91.44, C;34= 71.96, and
S(N) consists of the 11 subsets of {1,2,3,4} that contain at least two members.

Here, we are determining real-valued sample sizes. Rounding the real-valued sample sizes up produces
integer-valued sample sizes that satisfy the variance constraints and approximately minimize the total sample
size. We do not address the problem of which stratum sample sizes to round up and which to round down for
optimality.



Example 1 isa small instance of this problem. The sample design for the Monthly Retail Trade Survey uses
approximately N=800 strata and approximately |C|=100 reliability constraints. Applying the transformation x;
-> g /x; fori=1, ..., N, we obtain an equivalent problem.

The Transformed Problem
Let N be a positive integer, and let &, ..., &y, Cy,..., Cx, and Cy,..., Cy be positive real numbers. Let CI S(N),
and let ca, for Al C, be positive real numbers. Minimize a/x; + ... + a/Xy subject to

é”Axi £c, fordlAT C,andc £x £ G foral 1£i £ N.

That is, a point p=(py,..., pn) satisfies the Problem if and only if the point q =(q,..., qv) defined by g := a/p;
for i=1,..., N, satisfies the Transformed Problem with variable constraints a/C; £ x; £ a/c; for al i=1,...,N.

In Example 1, the Transformed Problem is to minimize 100/x; + 1600/x, + 900/x5 + 400/x,4 subject to
X1+Xo+X3+Xs £ 161.69, X1+X5 £ 91.44, x3+Xs £ 71.96, 10 £ X, £ 50, 80 £ x, £ 800, 30 £ x3 £ 450, and 40 £
X4 £ 200.

Note that the Transformed Problem has a solution when the constraint region is nonempty, since the objective
function is continuous and the constraint region is compact. Furthermore, the Transformed Problem has a
unique solution p, since the objective function is strictly convex and the constraint region is convex.

Moreover the solution p is on the boundary of the constraint region, so it satisfies a subcollection of the
congtraints with equality. These statements hold for any collection of mutually satisfiable constraints C. Our
main result (Theorem 1) describes the solution to the Transformed Problem in more detail for nested
collections C.

Defn A collection C of setsis nested if C can be partitioned into subcollections C(0), ..., C(K) for someK 3 0
such that the members of each C(k) are pairwise digoint, and for k < K, each member of C(k+1) is the union
of two or more members of C(k). The members of C(k) are called the level k sets and we write Lev(A):=k
for al Al C(k).

For instance the collection {{1,2}, {3}, {1,2,3}} is nested with C(0) = {{1,2}, {3}} and C(1) = {{1,2,3}}.
We shall see in Section 3 that the decomposition of C into C(0), ..., C(K) is unique and so members of C
can't be construed to have different levels.

Our solution of the Transformed Problem narrows down the search for a minimum to arelatively easily
computed list of points that contains the minimum. We present our solution in Section 2. Section 3 contains
preliminary results, and Section 4 contains the proof.

Notation

Throughout this paper, N denotes a positive integer, and &, ..., a, Cy,..., Cn, and C,,..., Cy are poditive real
numbers. Also S(N) :={A | {1,.., N}: |A|>1},and C i S(N) is nested, and is partitioned into subcollections
C(0), ..., C(K) asin the definition of a nested collection. Also ca, for Al C, are positive real numbers. We
define V:={{1},... {N}}, the singleton sets, and for all L£i £ N, ¢yl {ci ,G}. We define the constraint
region defined by Cto be

CR(C)={&iax, £c, :AT CJC{c, £x, £C, :1Ei £ N}

For any subcollection D of S(N) E V, we define the equality constraint region defined by D to be



EQ(D):={&;.x, =c, :Al D}

s0 CR(C) and EQ(D) are subsets of RY. Note that CR(C) and EQ(D) depend on the ¢, and that EQ(D) can
involve the c;, for singletons {i}.

2. Statement of the Algorithm

Defn A collectionD | S(N) E V iscompleteif for al 1 £ k £ N, there exists Al D such that ki A.

Defn Let D be a subcollection of CEV, and let Al D. Define Max(A,D) := {Bl D: B isamaxima proper
subset of A}.

Here we mean that B is maximal with respect to containment. We call the members of Max(A,D) the
maximal subsets of A (in D). E.g. for N:=4 and D:={{1,2} {3}, {1,2,3,4}}, Max({1,2,3,4} ,D) =

{{1,2} {3}}. For D:=C E V, Max(A,D) consists of the level Lev(A)-1 sets in the decomposition of A into
level Lev(A)-1 sets. We shall see for a complete subcollection D of C E V, the nonempty sets A \
EMax(A,D), for A T D, partition {1,...,.N}. This needn’t be true when C isn’t nested, e.g. for
C=D={{2}.{3}.{1.2}.{1,3}}.

Example: For N:=4 and D:={{1,2} {3}, {1,2,3,4}}, {1,2} \EMax({1,2} D) ={1,2}, {3} \ EMax({3},D) =
{3}, and {1,2,3,4} \ EMax({1,2,3,4},D) = {4}.

Defn Let D be a subcollection of CEV. We define D to be union-free if there do not exist nand A, A, ..., A,
T DWithA=AE...E A,

For example, {{1},{1,2,3}} is union-free, while {{1} {2,3},{1,2,3}} isnot. Note that every complete
collection D has a union-free complete subcollection E. (You can create E by iteratively omitting sets A from
D that are unions of other setsin D.) We now state the main theorem, which presents the agorithm for
solving the Transformed Problem for nested constraints. The algorithm presents a list containing the
minimum.

Theorem1LetC i {A T {1,..., N}: |A| > 1} be nested, and suppose
CR(C)={&iax, £c, :AT CJC{c, £x, £C, :1Ei £ N}
is nonempty. Let p=(py,...,pn)I R" be the unique minimum of & Y, a, / X; on CR(C). Then there are a union-

free complete subcollection D I CEV and constants ¢yl {c; ,G} for al singletons {i} T D, such that for all
Al D andforeachi T A\ EMax(A,D),

o

CA = a ~ CB
_ Bi Max(A D)
Pi =73 A

a it A\E Max(A,D) A ai

Aswe will see this means that the constrained minimum is obtained by hierarchically satisfying a complete
subcollection of the constraints with equality.

Example: The minimum of 1/x; + 1/x, subject to 1/2£ x; £ 1, 1£ X, £ 4 and x;+X, £ 4 occurs at (1,3). Here
D={{1}.{1,2}}.

Example: The minimum of 1/x; + 1/xp+ /X3 subject to 3£ 5, X3 +X:£ 2, and X +xx+X3 £ 6 occurs at
4



(1,1,4). HereD ={{1,2}, {1,2,3}}.

Theorem 1 solves the Transformed Problem. The (original) Problem is solved by the point g :=a / p;, for 1
£ i £ N. We note that since the bounds on redundant constraints can be made unachievable without changing
the polytope, we may assume that the D in Theorem 1 consists of irredundant constraints.

Example 1: Five of these constraints are redundant. There are 27 union-free complete subcollections D of
irredundant constraints, associated to each of which is a candidate solution pD from the conclusion of
Theorem 1. For example, D={{1} {4} ,{1,2} {1,2,3,4}} is a complete union-free subcollection with
associated point pD=(10, 81.44, 30.25, 40). This point isfeasible, i.e. liesin the constraint region, and has
objective function value 69.3984. Among these 27 points, the feasible point with minimal objective function is
the point (10.4225, 80, 31.2675, 40), with function value 68.3785. This point arises from the subcollection
{{2} {4},{1,2,3,4}}. Corresponding to this solution is the solution to the (original) Problem (9.5946, 20,
28.7839, 10). We would take stratum sample sizes (10, 20, 29, 10) (or play around with different
roundings).

We note how Theorem 1 could be implemented and contrast it to Chromy’s algorithm. To implement our
algorithm, we could write a computer program to remove as many redundant constraints as possible,
compute all complete union-free subcollections of irredundant constraints and their corresponding points, and
determine the feasible point among these with lowest objective function value. (The algorithm will produce a
feasible point if the constraint region is nonempty.) In contrast, Chromy’s algorithm takes with a user-
specified level of tolerance e and either doesn’'t converge or iterates eventually toward a solution within e It
won't in general produce the exact solution, might not converge, and might take longer or shorter to produce
a point within e tolerance depending on the size of e and the choice of initial point.

3. Preliminaries

Prop1Let0£r<s£K andlet Al C(s). Then there exists a positive integer t and unique A,..., A T C(r)
suchthat A = A,E ... E A.

Proof Existence is obvious. Suppose A, E ... E A.=B, E ... E B, for some B,,..., B,] C(k). Since distinct
level r sets are pairwise digjoint, for dll 1 £ £ t, there exists 1 £ j £r such that A = B. O

Cor C(0),..., C(K) are pairwise digoint.

Cor If A,Bl CandB i A, then Lev(B) £ Lev(A), and B is one of the sets in the decomposition of A into level
Lev(B) sets.

Proof Suppose Lev(B) > Lev(A). Decomposing B into distinct level Lev(A) setsBy,..., B, sinceB | A, we
see that t=1 and A=B,; =B. Contradiction. Now decompose A into distinct level Lev(B) sets Ay,..., A.. SinceB
i A, weseethat t=1 and B=A, forsome 1 £i£t. O

Prop 2 C(0) = {Al C: Max(A,C) =/} and for 0< k £ K, C(k) ={Al C\ (C(0) E...E C(k-1)) : Max(A, C\
(C(0) E...E C(k-1)) = £}.

Proof Let D(k):= {Al C\ (C(0) E...E C(k-1)): Max(A, C\ (C(0) E...E C(k-1)) = /E} for 0 £ k £ K. We are
to show C(k)=D(k) for al k. Notethat C(k) I D(k) follows from the corollaries. Fix 0 £ k £ K.

Let Al D(k). Suppose Al C(j) for some|j > k. Decomposing A into distinct level k sets A, ..., A, since
5



Max(A, C\ (C(0) E...E C(k-1)) = A& we see that t=1 and A=Al C(k). O
Defn A collection of sets D is weakly nested if for all A,Bl D, ACB=/, Bi A, or Al B.

That is, every pair of members of D is digoint or satisfies a containment relation. Every subcollection of a
nested collection is weakly nested. In particular, the members of Max(A,D) for A in a complete subcollection
D of C are pairwise digoint. However, for example, {{1},{1,2}} is weakly nested but not nested. Note that
in the next proposition, some of the members A \ EMax(A,D) of this partition might be empty, e.g. for

D={{1} {2} {1,2}}.

Prop 3 Let D be a complete subcollection of CEV. Then the sets A \ EMax(A,D) for Al D partition {1,...,N}.
Proof Let 1£i £ N. Let Al D be minimal with respect to containment such that A containsi. Theni T A\
EMax(A,D). Supposei T T\ EMax(T,D) for some T1 D. Then A and T meet, but wecan't have A 1 T
or Tl A ,s0A=T.00

We next describe in detail the solution to one equality constraint.

Prop 4 Let ¢ be a nonzero real number. The unique minimum of f(x,,...,.x, ) = &% a /xi subject to

3N x. =cand x>0, ..., x>0 occurs at the point :=; 1/ . Thisisthe point of the
a|_1 i 1 N p p \/a—l++‘/a(‘\/a aN) p
a +...+,/ 2
first octant that satisfies the equations %z...zi—’;‘ and é X; =c¢. Furthermore f(p) = (‘/—l S &) .
1 N

Proof Straightforward. O

For the next proposition, we adopt the standard convention that the empty sum is zero.

Prop 5 Let D be a complete subcollection of CEV, and let ¢yl {c; ,G} for al singletons {i}T D. Then
o

o ~
EQ(D) _{a imemaap) X~ €A~ A g maqap) ©B -Al D}'

In particular, EQ(D)=/ if and only if there exists Al D with A \ EMax(A,D)= £ andc, * é B Maxa,0) CB

That is, equality constraints on a complete subcollection can be rewritten as equality constraints in digoint
variables. Eg {X]_:Cl, Xo=C,, X1+X2+X3=C{ 12'3}} ={ X1=C1, Xo=C,, X3=C{1’213}'C1'C2}. Note that we need to
include the empty sums in Proposition 5. For example, let N:=2, C:={{1,2}}, and D:=C EV. If ¢;1 =
Ciy+Cy2 then the set in Proposition 5 consists of the point (C;1, C2), whileif ¢;12 * Ci3+C(2, then the set in
Proposition 5 is the empty set. The proposition would have failed if we had excluded the empty sum in the
latter case.

. ~ N ~ [¢] _ [e] [o]
Proof We first note that for al of R™ and Al D, {a i emaan) d = QA g vaqap A s Y }
since the members of Max(A,D) are pairwise digoint. Let gf RN and let Al D. Suppose é 0 =cforal
~ [} o] [o] o] [¢]
TI'D. Then g i A\EMaxa.D) A1~ A% dg Max(A,D)a isdi=Ca- Ay Max(a,D) B *
Suppose, on the other hand, é 2 cg fordl TI D. Then

Ay Max(T, D)

6
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o [ [¢] o]
a;a=a i memaxa.y ta 4 MaX(AVD)a 15 i- By induction on Lev(A), a g; =cgforal

~ [¢}
Bl Max(A.D). So g iadi=ta-a B Maxa,0) B © Ay max(a,0) B A =

Notation: For a complete subcollection D of CEV and constants c;;i {c; ,G} for al singletons {i}T D, let
pD denote the point defined by D in Theorem 1. That is
[¢}

A Cs R R N
pD; = 5——2ED__ [a fordlil A\EMax(A,D)with Al D.

a il A\E Max(A,D)Vai

Note that some coordinates of pD might be zero or negative.

Cor Let D be a complete subcollection D of CEV such that EQ(D) /&, and let ¢yl {c; ,C} for al singletons
{i}T D. Suppose that all coordinates of pD are nonzero. Then pD minimizes S a/x; on EQ(D).

So pD is on the boundary of CR(C) and, if its coordinates are nonzero, is determined by hierarchically solving
a subset of the constraints with equality and minimizing the objective function on each of the corresponding
equaity constraints in digjoint variables.

o

a Bi Max(A,D) Ce Al D}

Proof By Proposition 5, {é X =Ca Al D}zié - X; =Cp -

il A\E Max(A,D)
Since the latter constraints are in disjoint variables, the result follows from Proposition 4. O

Defn Let D be a subcollection of CEV. We define the core of D to be the set Core(D):={ Al D:
Al EMax(A,D)}.

Core(D) is the union-free subcollection we get by throwing out unions. For D:={{1} {2},{1,2}}, Core(D) =
{{1{2}}, while{{1,2}} is another union-free subcollection. If D is complete, so isits core, and D and
Coreg(D) contain the same singletons. Core(D) defines the same equality constraints as D, while an arbitrary
union-free subcollection needn’t.

Prop 6 Let D be a complete subcollection of CEV such that EQ(D)! A&, and let c{i}T {ci ,C} for al singletons
{i}T D. Then EQ(D)= EQ(Core(D)).

That is, nontrivial equality constraints on a complete subcollection can be rewritten as equality constraints on
their union-free cores. For example, D:={{1} {2},{1,2}} and E:={{1} {2}} define the same equality
congtraints if those defined by D have a solution (but they don't if those defined by D have no solution).

Proof For k 3 0, define CD(k):= Core(D) E{Al D: Lev(A) £ k}. We prove by induction on k that
EQ(Core(D)) = EQ(CD(k)) For k=0, CD(0) = Core(D) Suppose the claim is true for somek 3 0. Let A 1
CD(k+l) \ CD(K), and let pl EQ(Core(D)). Then A = EMax(A D), and, since EQ(D)* A&

Cp = aBI Max(A,D)CB . By induction, pl EQ(E(K)) , so a p, =cgfor al Bl Max(A,D), so
o] o]

a-iTApi = aBTMax(A,D)CB =C,-O

Cor Let D be a complete subcollection of CEV such that EQ(D)! /&, let c;yi {c; ,G} for al singletons
{i}1 D, and let E:=Core(D). Then pD = pE.

Proof By Proposition 6, EQ(D) = EQ(Core(D)). By the Corollary to Proposition 5, pD is the minimum of f on
7



EQ(D) and pE is the minimum of f on EQ(Core(D)), so we are done since the constrained minima are unique.
O

Next, we specify an algorithm to generate all complete union-free subcollections D of CEV. To generate
those with, say k singletons, start with a collection D of k singletons. If D is not complete (i.e. if k < N), add
to D a nonsingleton member A of C that contains an integer in {1,...,N} \ ED, i.e. that contains some “ new”
integer. If the resulting collection D is not complete, add to D a member B of C that contains a member of
the new {1,...,N} \ ED. Continue until the resulting collection D is complete.

Such a collection D is union-free since each set we added to D contains a new integer. Now fix an arbitrary
union-free complete subcollection D, with, say, k singletons and n nonsingleton sets. Let Ay, ..., A, beits
nonsingleton sets, listed in order of nondecreasing level. The D is the result of the algorithm that starts with
the k singletons and adds the sets Ay, ..., A, in order. (Suppose that for somek, Aq1 | SE A E ... EA,,
where Sis the union of the singletonsin D. Then by weak nesting and our ordering of the A’s, each of
Ay,..., A that meets A, iscontained in A.;. SO Ag.q isthe union of the singletons from S ¢ Ay.; and the
Ay, ..., Acthat meet A.1.) The next proposition improves on the earlier assertion that the constrained
minimum is on the boundary of the constraint region.

Prop 7 Let p minimize S a /x; on CR(C). There are a complete subcollection D of CEV and constants c¢;;:=C;
for al singletons {i} T D, such that pl EQ(D).

Proof Suppose not. Let 1£i £ N besuchthat ¢, £ pi < G andd ;A p; <C, for al Al C such that A contains

i. Wemay assumei=1. Since all coordinates of the gradient of f are negative at p, the directional derivative
of f in the unit direction u:=(1,0,...,0) is negative at p. Then f(p+tu) < f(p) for al sufficiently small t > 0, and
we may choose t small enough so that p+tul CR(C). Contradiction. O

Example For f(xy, X2):= U/X;+1/X, on CR(C):={X1+x.£2, 3/2Ex,£2, YoEX£2}={(3/2,1/2)}, p=(3/2,1/2)
T EQ(D) for D={{1,2}}. However, pt pD for this D, but rather for D={{1} {2}}, {{1}.{1,2}}, or
{{2} {1,2}} with c(13:=3/2 and ¢;»:=1/2.

Prop8Let Ji V,and I:= EJ. Let D be acomplete subcollection of CEV. Suppose that the nonempty sets
A\l for Al D are distinct. Let F:={A\l: Al D, A\l /&, and let Al D be such that A\I* &£ Then

(1) {Bl Max(A,D): Bl t A ={BI D:BIT Max(A\l,F)}.
Suppose also that {Bl D: Bl= &} ={{i}:i 11}. Then

(2) {Bl Max(A,D): BI=A} ={{i}:i 1 (ACI)\ E{BI Max(A,D): Bl t /}, and

(3) A \ EMax(A,D) = (A\l) \ EMax(All, F).

Proof Note that for al T1 F, thereis a unique Bl D such that T=B\I. Note also that by weak nesting, for all
Bl D such that B\I* &, AEB if and only if A\l E B\l. (For the direction U , note that if Al B, then A\I=B\I
implies A=B by hypothesis.) Part (1) now follows easily.

(2): Let BI Max(A,D) with B\I=/. By hypothesis, B={i} for some il ACI. Supposeil T for some
T1 Max(A,D) with T\l /£ Then {i}| T, so by maximality {i}=T, contradicting T\l * /&

Now leti T (ACI)\ E{BI Max(A,D): B\l * /& and write{i} | Ti A for some TI Max(A,D). Then T\I=A, so
[T|=1, so {i}=T1 Max(A,D).

(3: By(l)and (2), . L
EMax(AD) = (E{Bl Max(A,D): Bl 1 /&) E ((ACI)\ E{Bl Max(A,D): Bl 1 &)
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= (E{Bl Max(A,D): B\l t /&) E (ACI) = (E{Bl D: BIT Max(A\l,F)}) E (ACI)
= (E{B\l: Bl D, B\Il Max(A\l,F)}) E (ACI) = (EMax(A\l,F)) E (ACI).O0

4. Proof of the Algorithm

We now prove the main theorem, which solves the Transformed (and the original) Problem for nested
constraints. By the Corollary to Proposition 5, Theorem 1 says that the constrained minimum is determined
by hierarchically solving a subset of the constraints with equality and minimizing the objective function on
each of the corresponding equality constraintsin digoint variables.

Theorem1Let C i {A I {1,..., N}: |A| > 1} be nested, and suppose

CREC) :={a;,% £c, :AT CC{c, £x, £C :1£i £N}
is nonempty. Let p=(py,...,px)I RY be the unique minimum of f(x,,...,Xy) = &%, /x on CR(C). Then

there are a union-free complete subcollection D i CEV and constants ¢yl {c; ,G} for adl singletons {i} 1 D,
such that for all Al D and for eachi T A\ EMax(A,D),

[}
Ca

B a Bl Max Ce
_ (A,D)
Pi = 8

a ii A\EMax(A, D) V 8,

Proof We prove this by induction on N. The case N=1 is obvious.

Suppose p satisfies some of the variable constraints with equality. Let J:={{i}: pl {ci, C}}, and let I:= EJ.
Define E:={A\l: Al C, A\l A&},
dg :=min{c, - &;ac P :B=A\I,AT C} fordl B E
and g RM"by g :=p foril I. Then E isnested and g minimizes &;; ,a; / X; on the constraint region
CRE) ={8;5x, £dg:Bl E}C{c, £x, £C, :il 1}. By induction, thereis a complete subcollection F of
EE{{i}:iT 1} and constants d,l {c; ,G} for all j| | such that for all Al F, and for eachj T A\ EMax(A,F),
d, -

aBIM (AF)
P; = = \/_
ak| A\EMax(AF)V
Let D:={Al C: AITF, d, =Cp - 8jaciP; } E {{i}: 111}, and set c{i}':pT {ci, G} foril I. Throw out

from D any sets A with duplicate A\l (which would require duplicate C, - & ac,P; ) s that for each Bl F

thereis aunique Al D such that B=A\l. D is complete since F is. We claim that p=pD. Note that by our
choice of c;y's, pi =pD; for al il 1.

Fix ji 1, and let Al D besuchthatj T A\ EMax(A,D). Then Al is nonempty and so by Proposition 8, (All) \
EMax(A\l, F) = A \ EMax(A,D). So

]

d d o] o]
ANl aBTD,B\ITMax(A\I,F) B\ T alIAQI aBT Max(A,D),B\I* f

(cg - é. P)
il BCI

o
=G -a Bl Max(A,D),B\I* f Ce - Ay (A(;I)\E{BTMax(A,D):B\Ilf}pi

By part (3) of Proposition 8, thisisequal to ¢, - é MaxAD) Cg , and so p=pD;, as desired.
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So we may assumethat for all 1£1 £ N, ¢;<p;<C;. Let D be a complete subcollection of C such that
pl EQ(D) and suppose p * pD; for somei T A\ EMax(A,D) with Al D. By Proposition 5, | A \ EMax(A,D) |
> 1. By propositions 4 and 5, there exist i jl A such that 3 /pi2 > aj/pj2 . The directiona derivative of f in the
direction v defined by
1, ifk=i
-1, if k=]
10, otherwise
is negative at p, so for al sufficiently small t>0, f(p+tv) < f(p), and so p+tv is not in the constraint region. So

pi=Ci or p=c;. Contradiction. Finaly, we may assume D is union-free by replacing it with its core and
applying the corollary to Proposition 6.00

Remark on the proof: From Proposition 7, we know that the constrained minimum p isin EQ(D) for some
complete subcollection D. |If we could prove more easily that pD was in CR(C), we could use an easier
argument in the proof of Theorem 1. However, as we know from Example 1, many D produce unfeasible
points pD.

Conjecture Suppose that for all complete union-free subcollections D of CEV that contain no singletons, pD;
< c; . Let E be a complete subcollection for which pE is the constrained minimum in Theorem 1. Then E
contains the singleton {1} .
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